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Chapter 1

Introduction

1.1 What is Econometrics?

The term “econometrics” is believed to have been crafted by Ragnar Frisch (1895-1973) of
Norway, one of the three principal founders of the Econometric Society, Þrst editor of the journal
Econometrica, and co-winner of the Þrst Nobel Memorial Prize in Economic Sciences in 1969. It
is therefore Þtting that we turn to Frisch’s own words in the introduction to the Þrst issue of
Econometrica to describe the discipline.

A word of explanation regarding the term econometrics may be in order. Its deÞni-
tion is implied in the statement of the scope of the [Econometric] Society, in Section I
of the Constitution, which reads: “The Econometric Society is an international society
for the advancement of economic theory in its relation to statistics and mathematics....
Its main object shall be to promote studies that aim at a uniÞcation of the theoretical-
quantitative and the empirical-quantitative approach to economic problems....”

But there are several aspects of the quantitative approach to economics, and no single
one of these aspects, taken by itself, should be confounded with econometrics. Thus,
econometrics is by no means the same as economic statistics. Nor is it identical with
what we call general economic theory, although a considerable portion of this theory has
a deÞninitely quantitative character. Nor should econometrics be taken as synonomous
with the application of mathematics to economics. Experience has shown that each
of these three view-points, that of statistics, economic theory, and mathematics, is
a necessary, but not by itself a su!cient, condition for a real understanding of the
quantitative relations in modern economic life. It is the uniÞcation of all three that is
powerful. And it is this uniÞcation that constitutes econometrics.

Ragnar Frisch, Econometrica, (1933), 1, pp. 1-2.

This deÞnition remains valid today, although some terms have evolved somewhat in their usage.
Today, we would say that econometrics is the uniÞed study of economic models, mathematical
statistics, and economic data.

Within the Þeld of econometrics there are sub-divisions and specializations. Econometric the-
ory concerns the development of tools and methods, and the study of the properties of econometric
methods. Applied econometrics is a term describing the development of quantitative economic
models and the application of econometric methods to these models using economic data.

1.2 The Probability Approach to Econometrics

The unifying methodology of modern econometrics was articulated by Trygve Haavelmo (1911-
1999) of Norway, winner of the 1989 Nobel Memorial Prize in Economic Sciences, in his seminal

1
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paper “The probability approach in econometrics”, Econometrica (1944). Haavelmo argued that
quantitative economic models must necessarily be probability models (by which today we would
mean stochastic). Deterministic models are blatently inconsistent with observed economic quan-
tities, and it is incoherent to apply deterministic models to non-deterministic data. Economic
models should be explicitly designed to incorporate randomness; stochastic errors should not be
simply added to deterministic models to make them random. Once we acknowledge that an eco-
nomic model is a probability model, it follows naturally that an appropriate tool way to quantify,
estimate, and conduct inferences about the economy is through the powerful theory of mathe-
matical statistics. The appropriate method for a quantitative economic analysis follows from the
probabilistic construction of the economic model.

Haavelmo’s probability approach was quickly embraced by the economics profession. Today no
quantitative work in economics shuns its fundamental vision.

While all economists embrace the probability approach, there has been some evolution in its
implementation.

The structural approach is the closest to Haavelmo’s original idea. A probabilistic economic
model is speciÞed, and the quantitative analysis performed under the assumption that the economic
model is correctly speciÞed. Researchers often describe this as “taking their model seriously.” The
structural approach typically leads to likelihood-based analysis, including maximum likelihood and
Bayesian estimation.

A criticism of the structural approach is that it is misleading to treat an economic model
as correctly speciÞed. Rather, it is more accurate to view a model as a useful abstraction or
approximation. In this case, how should we interpret structural econometric analysis? The quasi-
structural approach to inference views a structural economic model as an approximation rather
than the truth. This theory has led to the concepts of the pseudo-true value (the parameter value
deÞned by the estimation problem), the quasi-likelihood function, quasi-MLE, and quasi-likelihood
inference.

Closely related is the semiparametric approach. A probabilistic economic model is partially
speciÞed but some features are left unspeciÞed. This approach typically leads to estimation methods
such as least-squares and the Generalized Method of Moments. The semiparametric approach
dominates contemporary econometrics, and is the main focus of this textbook.

Another branch of quantitative structural economics is the calibration approach. Similar
to the quasi-structural approach, the calibration approach interprets structural models as approx-
imations and hence inherently false. The di erence is that the calibrationist literature rejects
mathematical statistics (deeming classical theory as inappropriate for approximate models) and
instead selects parameters by matching model and data moments using non-statistical ad hoc1

methods.

1.3 Econometric Terms and Notation

In a typical application, an econometrician has a set of repeated measurements on a set of vari-
ables. For example, in a labor application the variables could include weekly earnings, educational
attainment, age, and other descriptive characteristics. We call this information the data, dataset,
or sample.

We use the term observations to refer to the distinct repeated measurements on the variables.
An individual observation often corresponds to a speciÞc economic unit, such as a person, household,
corporation, Þrm, organization, country, state, city or other geographical region. An individual
observation could also be a measurement at a point in time, such as quarterly GDP or a daily
interest rate.

1Ad hoc means “for this purpose” — a method designed for a speciÞc problem — and not based on a generalizable
principle.
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Economists typically denote variables by the italicized roman characters  , !" and/or #$ The
convention in econometrics is to use the character  to denote the variable to be explained, while
the characters ! and # are used to denote the conditioning (explaining) variables.

Following mathematical convention, real numbers (elements of the real line R, also called
scalars) are written using lower case italics such as  , and vectors (elements of R ) by lower
case bold italics such as x" e.g.

x =

 

!!!
"

!1
!2
...
! 

#

$$$
%

$

Upper case bold italics such as X are used for matrices.
We denote the number of observations by the natural number %" and subscript the variables

by the index & to denote the individual observation, e.g.  !" x! and z!. In some contexts we use
indices other than &, such as in time-series applications where the index ' is common and ( is used
to denote the number of observations. In panel studies we typically use the double index &' to refer
to individual & at a time period '.

The &"# observation is the set ( !"x!"z!)$ The sample is the set
{( !"x!"z!) : & = 1" $$$" %}$

It is proper mathematical practice to use upper case ) for random variables and lower case ! for
realizations or speciÞc values. Since we use upper case to denote matrices, the distinction between
random variables and their realizations is not rigorously followed in econometric notation. Thus the
notation  ! will in some places refer to a random variable, and in other places a speciÞc realization.
This is an undesirable but there is little to be done about it without terriÞcally complicating the
notation. Hopefully there will be no confusion as the use should be evident from the context.

We typically use Greek letters such as *" + and ,2 to denote unknown parameters of an econo-
metric model, and will use boldface, e.g.  or !, when these are vector-valued. Estimates are
typically denoted by putting a hat “^”, tilde “~” or bar “-” over the corresponding letter, e.g. *̂

and *̃ are estimates of *$
The covariance matrix of an econometric estimator will typically be written using the capital

boldface V " often with a subscript to denote the estimator, e.g. V   
= var

³
b 
´
as the covariance

matrix for b $ Hopefully without causing confusion, we will use the notation V  = avar(b ) to denote
the asymptotic covariance matrix of

 
%
³
b !  

´
(the variance of the asymptotic distribution).

Estimates will be denoted by appending hats or tildes, e.g. bV  is an estimate of V  .

1.4 Observational Data

A common econometric question is to quantify the impact of one set of variables on another
variable. For example, a concern in labor economics is the returns to schooling — the change in
earnings induced by increasing a worker’s education, holding other variables constant. Another
issue of interest is the earnings gap between men and women.

Ideally, we would use experimental data to answer these questions. To measure the returns
to schooling, an experiment might randomly divide children into groups, mandate di erent levels
of education to the di erent groups, and then follow the children’s wage path after they mature
and enter the labor force. The di erences between the groups would be direct measurements of
the e ects of di erent levels of education. However, experiments such as this would be widely
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condemned as immoral! Consequently, in economics non-laboratory experimental data sets are
typically narrow in scope.

Instead, most economic data is observational. To continue the above example, through data
collection we can record the level of a person’s education and their wage. With such data we
can measure the joint distribution of these variables, and assess the joint dependence. But from
observational data it is di!cult to infer causality, as we are not able to manipulate one variable to
see the direct e ect on the other. For example, a person’s level of education is (at least partially)
determined by that person’s choices. These factors are likely to be a ected by their personal abilities
and attitudes towards work. The fact that a person is highly educated suggests a high level of ability,
which suggests a high relative wage. This is an alternative explanation for an observed positive
correlation between educational levels and wages. High ability individuals do better in school,
and therefore choose to attain higher levels of education, and their high ability is the fundamental
reason for their high wages. The point is that multiple explanations are consistent with a positive
correlation between schooling levels and education. Knowledge of the joint distibution alone may
not be able to distinguish between these explanations.

Most economic data sets are observational, not experimental. This means
that all variables must be treated as random and possibly jointly deter-
mined.

This discussion means that it is di!cult to infer causality from observational data alone. Causal
inference requires identiÞcation, and this is based on strong assumptions. We will discuss these
issues on occasion throughout the text.

1.5 Standard Data Structures

There are three major types of economic data sets: cross-sectional, time-series, and panel. They
are distinguished by the dependence structure across observations.

Cross-sectional data sets have one observation per individual. Surveys are a typical source
for cross-sectional data. In typical applications, the individuals surveyed are persons, households,
Þrms or other economic agents. In many contemporary econometric cross-section studies the sample
size % is quite large. It is conventional to assume that cross-sectional observations are mutually
independent. Most of this text is devoted to the study of cross-section data.

Time-series data are indexed by time. Typical examples include macroeconomic aggregates,
prices and interest rates. This type of data is characterized by serial dependence so the random
sampling assumption is inappropriate. Most aggregate economic data is only available at a low
frequency (annual, quarterly or perhaps monthly) so the sample size is typically much smaller than
in cross-section studies. The exception is Þnancial data where data are available at a high frequency
(weekly, daily, hourly, or by transaction) so sample sizes can be quite large.

Panel data combines elements of cross-section and time-series. These data sets consist of a set
of individuals (typically persons, households, or corporations) surveyed repeatedly over time. The
common modeling assumption is that the individuals are mutually independent of one another,
but a given individual’s observations are mutually dependent. This is a modiÞed random sampling
environment.
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Data Structures

• Cross-section

• Time-series

• Panel

Many contemporary econometric applications combine elements of cross-section, time-series,
and panel data modeling. These include models of spatial correlation and clustering.

As we mentioned above, most of this text will be devoted to cross-sectional data under the
assumption of mutually independent observations. By mutual independence we mean that the &"#

observation ( !"x!"z!) is independent of the -"# observation ( $ "x$ "z$) for & 6= -. (Sometimes the
label “independent” is misconstrued. It is a statement about the relationship between observations
& and -, not a statement about the relationship between  ! and x! and/or z!$)

Furthermore, if the data is randomly gathered, it is reasonable to model each observation as
a random draw from the same probability distribution. In this case we say that the data are
independent and identically distributed or iid. We call this a random sample. For most of
this text we will assume that our observations come from a random sample.

DeÞnition 1.5.1 The observations ( !"x!"z!) are a random sample if
they are mutually independent and identically distributed (iid) across & =
1" $$$" %$

In the random sampling framework, we think of an individual observation ( !"x!"z!) as a re-
alization from a joint probability distribution . ( "x"z) which we can call the population. This
“population” is inÞnitely large. This abstraction can be a source of confusion as it does not cor-
respond to a physical population in the real world. It is an abstraction since the distribution .

is unknown, and the goal of statistical inference is to learn about features of . from the sample.
The assumption of random sampling provides the mathematical foundation for treating economic
statistics with the tools of mathematical statistics.

The random sampling framework was a major intellectural breakthrough of the late 19th cen-
tury, allowing the application of mathematical statistics to the social sciences. Before this concep-
tual development, methods from mathematical statistics had not been applied to economic data as
the latter was viewed as non-random. The random sampling framework enabled economic samples
to be treated as random, a necessary precondition for the application of statistical methods.

1.6 Sources for Economic Data

Fortunately for economists, the internet provides a convenient forum for dissemination of eco-
nomic data. Many large-scale economic datasets are available without charge from governmental
agencies. An excellent starting point is the Resources for Economists Data Links, available at
rfe.org. From this site you can Þnd almost every publically available economic data set. Some
speciÞc data sources of interest include

• Bureau of Labor Statistics

• US Census
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• Current Population Survey

• Survey of Income and Program Participation

• Panel Study of Income Dynamics

• Federal Reserve System (Board of Governors and regional banks)

• National Bureau of Economic Research

• U.S. Bureau of Economic Analysis

• CompuStat

• International Financial Statistics

Another good source of data is from authors of published empirical studies. Most journals
in economics require authors of published papers to make their datasets generally available. For
example, in its instructions for submission, Econometrica states:

Econometrica has the policy that all empirical, experimental and simulation results must
be replicable. Therefore, authors of accepted papers must submit data sets, programs,
and information on empirical analysis, experiments and simulations that are needed for
replication and some limited sensitivity analysis.

The American Economic Review states:

All data used in analysis must be made available to any researcher for purposes of
replication.

The Journal of Political Economy states:

It is the policy of the Journal of Political Economy to publish papers only if the data
used in the analysis are clearly and precisely documented and are readily available to
any researcher for purposes of replication.

If you are interested in using the data from a published paper, Þrst check the journal’s website,
as many journals archive data and replication programs online. Second, check the website(s) of
the paper’s author(s). Most academic economists maintain webpages, and some make available
replication Þles complete with data and programs. If these investigations fail, email the author(s),
politely requesting the data. You may need to be persistent.

As a matter of professional etiquette, all authors absolutely have the obligation to make their
data and programs available. Unfortunately, many fail to do so, and typically for poor reasons.
The irony of the situation is that it is typically in the best interests of a scholar to make as much of
their work (including all data and programs) freely available, as this only increases the likelihood
of their work being cited and having an impact.

Keep this in mind as you start your own empirical project. Remember that as part of your end
product, you will need (and want) to provide all data and programs to the community of scholars.
The greatest form of ßattery is to learn that another scholar has read your paper, wants to extend
your work, or wants to use your empirical methods. In addition, public openness provides a healthy
incentive for transparency and integrity in empirical analysis.
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1.7 Econometric Software

Economists use a variety of econometric, statistical, and programming software.
STATA (www.stata.com) is a powerful statistical program with a broad set of pre-programmed

econometric and statistical tools. It is quite popular among economists, and is continuously being
updated with new methods. It is an excellent package for most econometric analysis, but is limited
when you want to use new or less-common econometric methods which have not yet been programed.

R (www.r-project.org), GAUSS (www.aptech.com), MATLAB (www.mathworks.com), and Ox
(www.oxmetrics.net) are high-level matrix programming languages with a wide variety of built-in
statistical functions. Many econometric methods have been programed in these languages and are
available on the web. The advantage of these packages is that you are in complete control of your
analysis, and it is easier to program new methods than in STATA. Some disadvantages are that
you have to do much of the programming yourself, programming complicated procedures takes
signiÞcant time, and programming errors are hard to prevent and di!cult to detect and eliminate.
Of these languages, Gauss used to be quite popular among econometricians, but currently Matlab
is more popular. A smaller but growing group of econometricians are enthusiastic fans of R, which
of these languages is uniquely open-source, user-contributed, and best of all, completely free!

For highly-intensive computational tasks, some economists write their programs in a standard
programming language such as Fortran or C. This can lead to major gains in computational speed,
at the cost of increased time in programming and debugging.

As these di erent packages have distinct advantages, many empirical economists end up using
more than one package. As a student of econometrics, you will learn at least one of these packages,
and probably more than one.

1.8 Reading the Manuscript

I have endeavored to use a uniÞed notation and nomenclature. The development of the material
is cumulative, with later chapters building on the earlier ones. Never-the-less, every attempt has
been made to make each chapter self-contained, so readers can pick and choose topics according to
their interests.

To fully understand econometric methods, it is necessary to have a mathematical understanding
of its mechanics, and this includes the mathematical proofs of the main results. Consequently, this
text is self-contained, with nearly all results proved with full mathematical rigor. The mathematical
development and proofs aim at brevity and conciseness (sometimes described as mathematical
elegance), but also at pedagogy. To understand a mathematical proof, it is not su!cient to simply
read the proof, you need to follow it, and re-create it for yourself.

Never-the-less, many readers will not be interested in each mathematical detail, explanation,
or proof. This is okay. To use a method it may not be necessary to understand the mathematical
details. Accordingly I have placed the more technical mathematical proofs and details in chapter
appendices. These appendices and other technical sections are marked with an asterisk (*). These
sections can be skipped without any loss in exposition.
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1.9 Common Symbols

 scalar
x vector
X matrix
R real line
R Euclidean  space
E (!) mathematical expectation
var (!) variance
cov ("# !) covariance
var (x) covariance matrix
corr("# !) correlation
Pr probability
 ! limit
!
 ! convergence in probability
"
 ! convergence in distribution
plim# ! probability limit
N($# %2) normal distribution
N(0# 1) standard normal distribution
&2
 chi-square distribution with  degrees of freedom
I# identity matrix
trA trace
A0 matrix transpose
A"1 matrix inverse
A ' 0 positive deÞnite
A " 0 positive semi-deÞnite
kak Euclidean norm
kAk matrix (Frobinius) norm
# approximate equality
"$%
= deÞnitional equality
$ is distributed as
log natural logarithm



Chapter 2

Conditional Expectation and
Projection

2.1 Introduction

The most commonly applied econometric tool is least-squares estimation, also known as regres-
sion. As we will see, least-squares is a tool to estimate an approximate conditional mean of one
variable (the dependent variable) given another set of variables (the regressors, conditioning
variables, or covariates).

In this chapter we abstract from estimation, and focus on the probabilistic foundation of the
conditional expectation model and its projection approximation.

2.2 The Distribution of Wages

Suppose that we are interested in wage rates in the United States. Since wage rates vary across
workers, we cannot describe wage rates by a single number. Instead, we can describe wages using a
probability distribution. Formally, we view the wage of an individual worker as a random variable
()*+ with the probability distribution

, (-) = Pr(()*+ % -).

When we say that a person’s wage is random we mean that we do not know their wage before it is
measured, and we treat observed wage rates as realizations from the distribution ,. Treating un-
observed wages as random variables and observed wages as realizations is a powerful mathematical
abstraction which allows us to use the tools of mathematical probability.

A useful thought experiment is to imagine dialing a telephone number selected at random, and
then asking the person who responds to tell us their wage rate. (Assume for simplicity that all
workers have equal access to telephones, and that the person who answers your call will respond
honestly.) In this thought experiment, the wage of the person you have called is a single draw from
the distribution , of wages in the population. By making many such phone calls we can learn the
distribution , of the entire population.

When a distribution function , is di erentiable we deÞne the probability density function

/(-) =
0

0-
, (-).

The density contains the same information as the distribution function, but the density is typically
easier to visually interpret.

9
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Figure 2.1: Wage Distribution and Density. All full-time U.S. workers

In Figure 2.1 we display estimates1 of the probability distribution function (on the left) and
density function (on the right) of U.S. wage rates in 2009. We see that the density is peaked around
$15, and most of the probability mass appears to lie between $10 and $40. These are ranges for
typical wage rates in the U.S. population.

Important measures of central tendency are the median and the mean. The median 1 of a
continuous2 distribution , is the unique solution to

, (1) =
1

2
.

The median U.S. wage ($19.23) is indicated in the left panel of Figure 2.1 by the arrow. The median
is a robust3 measure of central tendency, but it is tricky to use for many calculations as it is not a
linear operator.

The expectation or mean of a random variable ! with density / is

$ = E (!) =

Z
!

"!

-/(-)0-.

Here we have used the common and convenient convention of using the single character ! to denote
a random variable, rather than the more cumbersome label ()*+. A general deÞnition of the mean
is presented in Section 2.31. The mean U.S. wage ($23.90) is indicated in the right panel of Figure
2.1 by the arrow.

We sometimes use the notation the notation E! instead of E (!) when the variable whose
expectation is being taken is clear from the context. There is no distinction in meaning.

The mean is a convenient measure of central tendency because it is a linear operator and
arises naturally in many economic models. A disadvantage of the mean is that it is not robust4

especially in the presence of substantial skewness or thick tails, which are both features of the wage

1 The distribution and density are estimated nonparametrically from the sample of 50,742 full-time non-military
wage-earners reported in the March 2009 Current Population Survey. The wage rate is constructed as annual indi-
vidual wage and salary earnings divided by hours worked.

2 If  is not continuous the deÞnition is ! = inf{" :  (")  
1

2
}

3 The median is not sensitive to pertubations in the tails of the distribution.
4 The mean is sensitive to pertubations in the tails of the distribution.
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distribution as can be seen easily in the right panel of Figure 2.1. Another way of viewing this
is that 64% of workers earn less that the mean wage of $23.90, suggesting that it is incorrect to
describe the mean as a “typical” wage rate.
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Figure 2.2: Log Wage Density

In this context it is useful to transform the data by taking the natural logarithm5. Figure 2.2
shows the density of log hourly wages log(()*+) for the same population, with its mean 2.95 drawn
in with the arrow. The density of log wages is much less skewed and fat-tailed than the density of
the level of wages, so its mean

E (log(()*+)) = 2.95

is a much better (more robust) measure6 of central tendency of the distribution. For this reason,
wage regressions typically use log wages as a dependent variable rather than the level of wages.

Another useful way to summarize the probability distribution , (-) is in terms of its quantiles.
For any 2 & (0# 1)# the 2&' quantile of the continuous7 distribution , is the real number 3( which
satisÞes

, (3() = 2.

The quantile function 3(# viewed as a function of 2# is the inverse of the distribution function ,.

The most commonly used quantile is the median, that is, 30)5 = 1. We sometimes refer to quantiles
by the percentile representation of 2# and in this case they are often called percentiles, e.g. the
median is the 50&' percentile.

2.3 Conditional Expectation

We saw in Figure 2.2 the density of log wages. Is this distribution the same for all workers, or
does the wage distribution vary across subpopulations? To answer this question, we can compare
wage distributions for di erent groups — for example, men and women. The plot on the left in
Figure 2.3 displays the densities of log wages for U.S. men and women with their means (3.05 and
2.81) indicated by the arrows. We can see that the two wage densities take similar shapes but the
density for men is somewhat shifted to the right with a higher mean.

5 Throughout the text, we will use log(#) or log # to denote the natural logarithm of #$
6 More precisely, the geometric mean exp (E (log%)) = $19$11 is a robust measure of central tendency.
7 If  is not continuous the deÞnition is & = inf{" :  (")  '}
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Figure 2.3: Log Wage Density by Sex and Race

The values 3.05 and 2.81 are the mean log wages in the subpopulations of men and women
workers. They are called the conditional means (or conditional expectations) of log wages
given sex. We can write their speciÞc values as

E (log(()*+) |  !" = #$%) = 3&05 (2.1)

E (log('$(!) |  !" = ')#$%) = 2&81& (2.2)

We call these means conditional as they are conditioning on a Þxed value of the variable sex.
While you might not think of a person’s sex as a random variable, it is random from the viewpoint
of econometric analysis. If you randomly select an individual, the sex of the individual is unknown
and thus random. (In the population of U.S. workers, the probability that a worker is a woman
happens to be 43%.) In observational data, it is most appropriate to view all measurements as
random variables, and the means of subpopulations are then conditional means.

As the two densities in Figure 2.3 appear similar, a hasty inference might be that there is not
a meaningful di erence between the wage distributions of men and women. Before jumping to this
conclusion let us examine the di erences in the distributions of Figure 2.3 more carefully. As we
mentioned above, the primary di erence between the two densities appears to be their means. This
di erence equals

E (log('$(!) |  !" = #$%) E (log('$(!) |  !" = ')#$%) = 3&05 2&81

= 0&24 (2.3)

A di erence in expected log wages of 0.24 implies an average 24% di erence between the wages
of men and women, which is quite substantial. (For an explanation of logarithmic and percentage
di erences see Section 2.4.)

Consider further splitting the men and women subpopulations by race, dividing the population
into whites, blacks, and other races. We display the log wage density functions of four of these
groups on the right in Figure 2.3. Again we see that the primary di erence between the four density
functions is their central tendency.
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men women
white 3.07 2.82
black 2.86 2.73
other 3.03 2.86

Table 2.1: Mean Log Wages by Sex and Race

Focusing on the means of these distributions, Table 2.1 reports the mean log wage for each of
the six sub-populations.

The entries in Table 2.1 are the conditional means of log('$(!) given sex and race. For example

E (log('$(!) |  !" = #$%* +$,! = '-./!) = 3&07

and
E (log('$(!) |  !" = ')#$%* +$,! = 01$,2) = 2&73

One beneÞt of focusing on conditional means is that they reduce complicated distributions
to a single summary measure, and thereby facilitate comparisons across groups. Because of this
simplifying property, conditional means are the primary interest of regression analysis and are a
major focus in econometrics.

Table 2.1 allows us to easily calculate average wage di erences between groups. For example,
we can see that the wage gap between men and women continues after disaggregation by race, as
the average gap between white men and white women is 25%, and that between black men and
black women is 13%. We also can see that there is a race gap, as the average wages of blacks are
substantially less than the other race categories. In particular, the average wage gap between white
men and black men is 21%, and that between white women and black women is 9%.

2.4 Log Di erences*

A useful approximation for the natural logarithm for small " is

log (1 + ") ! "& (2.4)

This can be derived from the inÞnite series expansion of log (1 + ") :

log (1 + ") = " 
"2

2
+

"3

3
 

"4

4
+ · · ·

= "+3("2)&

The symbol 3("2) means that the remainder is bounded by 4"2 as "" 0 for some 4 5#& A plot
of log (1 + ") and the linear approximation " is shown in Figure 2.4. We can see that log (1 + ")
and the linear approximation " are very close for |"| $ 0&1, and reasonably close for |"| $ 0&2, but
the di erence increases with |"|.

Now, if 6 is ,% greater than 6* then

6 = (1 + ,7100)6&

Taking natural logarithms,
log 6 = log 6 + log(1 + ,7100)

or
log 6  log 6 = log(1 + ,7100) !

,

100

where the approximation is (2.4). This shows that 100 multiplied by the di erence in logarithms
is approximately the percentage di erence between 6 and 6 , and this approximation is quite good
for |,| $ 10&
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Figure 2.4: log(1 + ")

2.5 Conditional Expectation Function

An important determinant of wage levels is education. In many empirical studies economists
measure educational attainment by the number of years of schooling, and we will write this variable
as education8.

The conditional mean of log wages given sex, race, and education is a single number for each
category. For example

E (log('$(!) |  !" = #$%* +$,! = '-./!* !89,$/.)% = 12) = 2&84

We display in Figure 2.5 the conditional means of log('$(!) for white men and white women as a
function of education. The plot is quite revealing. We see that the conditional mean is increasing in
years of education, but at a di erent rate for schooling levels above and below nine years. Another
striking feature of Figure 2.5 is that the gap between men and women is roughly constant for all
education levels. As the variables are measured in logs this implies a constant average percentage
gap between men and women regardless of educational attainment.

In many cases it is convenient to simplify the notation by writing variables using single charac-
ters, typically 6* " and/or :. It is conventional in econometrics to denote the dependent variable
(e.g. log('$(!)) by the letter 6* a conditioning variable (such as sex ) by the letter "* and multiple
conditioning variables (such as race, education and sex ) by the subscripted letters "1* "2* &&&* " .

Conditional expectations can be written with the generic notation

E (6 | "1* "2* &&&* " ) = #("1* "2* &&&* " )&

We call this the conditional expectation function (CEF). The CEF is a function of ("1* "2* &&&* " )
as it varies with the variables. For example, the conditional expectation of 6 = log('$(!) given
("1* "2) = (sex * race) is given by the six entries of Table 2.1. The CEF is a function of (sex * race)
as it varies across the entries.

For greater compactness, we will typically write the conditioning variables as a vector in R :

x =

 

!!!
"

"1
"2
...
" 

#

$$$
%

& (2.5)

8 Here, education is deÞned as years of schooling beyond kindergarten. A high school graduate has education=12,
a college graduate has education=16, a Master’s degree has education=18, and a professional degree (medical, law or
PhD) has education=20.
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Figure 2.5: Mean Log Wage as a Function of Years of Education

Here we follow the convention of using lower case bold italics x to denote a vector. Given this
notation, the CEF can be compactly written as

E (6 | x) = # (x) &

The CEF E (6 | x) is a random variable as it is a function of the random variable x. It is
also sometimes useful to view the CEF as a function of x. In this case we can write # (u) =
E (6 | x = u), which is a function of the argument u. The expression E (6 | x = u) is the conditional
expectation of 6* given that we know that the random variable x equals the speciÞc value u.
However, sometimes in econometrics we take a notational shortcut and use E (6 | x) to refer to this
function. Hopefully, the use of E (6 | x) should be apparent from the context.

2.6 Continuous Variables

In the previous sections, we implicitly assumed that the conditioning variables are discrete.
However, many conditioning variables are continuous. In this section, we take up this case and
assume that the variables (6*x) are continuously distributed with a joint density function ;(6*x)&

As an example, take 6 = log('$(!) and " = experience, the number of years of potential labor
market experience9. The contours of their joint density are plotted on the left side of Figure 2.6
for the population of white men with 12 years of education.

Given the joint density ;(6*x) the variable x has the marginal density

; (x) =

Z

R

;(6*x)86&

For any x such that ; (x) < 0 the conditional density of 6 given x is deÞned as

;!| (6 | x) =
;(6*x)

; (x)
& (2.6)

The conditional density is a (renormalized) slice of the joint density ;(6*x) holding x Þxed. The
slice is renormalized (divided by ; (x) so that it integrates to one and is thus a density.) We can

9 Here,  !" #$ %& is deÞned as potential labor market experience, equal to '(   )*&'+$,% 6
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Figure 2.6: White men with education=12

visualize this by slicing the joint density function at a speciÞc value of x parallel with the  -axis.
For example, take the density contours on the left side of Figure 2.6 and slice through the contour
plot at a speciÞc value of experience, and then renormalize the slice so that it is a proper density.
This gives us the conditional density of log(!"#$) for white men with 12 years of education and
this level of experience. We do this for four levels of experience (5, 10, 25, and 40 years), and plot
these densities on the right side of Figure 2.6. We can see that the distribution of wages shifts to
the right and becomes more di use as experience increases from 5 to 10 years, and from 10 to 25
years, but there is little change from 25 to 40 years experience.

The CEF of  given x is the mean of the conditional density (2.6)

% (x) = E ( | x) =

Z

R

 & | ( | x) ' ( (2.7)

Intuitively, % (x) is the mean of  for the idealized subpopulation where the conditioning variables
are Þxed at x. This is idealized since x is continuously distributed so this subpopulation is inÞnitely
small.

In Figure 2.6 the CEF of log(!"#$) given experience is plotted as the solid line. We can see
that the CEF is a smooth but nonlinear function. The CEF is initially increasing in experience,
ßattens out around experience = 30, and then decreases for high levels of experience.

2.7 Law of Iterated Expectations

An extremely useful tool from probability theory is the law of iterated expectations. An
important special case is the known as the Simple Law.

Theorem 2.7.1 Simple Law of Iterated Expectations
If E | | ) then for any random vector x,

E (E ( | x)) = E ( )
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The simple law states that the expectation of the conditional expectation is the unconditional
expectation. In other words, the average of the conditional averages is the unconditional average.
When x is discrete

E (E ( | x)) =
 X

!=1

E ( | x!) Pr (x = x!)

and when x is continuous

E (E ( | x)) =

Z

R 
E ( | x) & (x)'x(

Going back to our investigation of average log wages for men and women, the simple law states
that

E (log(!"#$) | *$+ = %",) Pr (*$+ = %",)

+ E (log(!"#$) | *$+ = !-%",) Pr (*$+ = !-%",)

= E (log(!"#$)) (

Or numerically,
3(05× 0(57 + 2(79× 0(43 = 2(92(

The general law of iterated expectations allows two sets of conditioning variables.

Theorem 2.7.2 Law of Iterated Expectations
If E | | ) then for any random vectors x1 and x2,

E (E ( | x1.x2) | x1) = E ( | x1)

Notice the way the law is applied. The inner expectation conditions on x1 and x2, while
the outer expectation conditions only on x1( The iterated expectation yields the simple answer
E ( | x1) . the expectation conditional on x1 alone. Sometimes we phrase this as: “The smaller
information set wins.”

As an example

E (log(!"#$) | *$+ = %",. /"0$ = !123$) Pr (/"0$ = !123$|*$+ = %",)

+ E (log(!"#$) | *$+ = %",. /"0$ = 45"06) Pr (/"0$ = 45"06|*$+ = %",)

+ E (log(!"#$) | *$+ = %",. /"0$ = -31$/) Pr (/"0$ = -31$/|*$+ = %",)

= E (log(!"#$) | *$+ = %",)

or numerically
3(07× 0(84 + 2(86× 0(08 + 3(03× 0(08 = 3(05(

A property of conditional expectations is that when you condition on a random vector x you
can e ectively treat it as if it is constant. For example, E (x | x) = x and E (# (x) | x) = # (x) for
any function #(·)( The general property is known as the Conditioning Theorem.

Theorem 2.7.3 Conditioning Theorem
If

E |# (x)  | ) (2.8)

then
E (# (x)  | x) = # (x)E ( | x) (2.9)

and
E (# (x)  ) = E (# (x)E ( | x)) ( (2.10)
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The proofs of Theorems 2.7.1, 2.7.2 and 2.7.3 are given in Section 2.34.

2.8 CEF Error

The CEF error $ is deÞned as the di erence between  and the CEF evaluated at the random
vector x:

$ =  !%(x)(

By construction, this yields the formula

 = %(x) + $( (2.11)

In (2.11) it is useful to understand that the error $ is derived from the joint distribution of
( .x). and so its properties are derived from this construction.

A key property of the CEF error is that it has a conditional mean of zero. To see this, by the
linearity of expectations, the deÞnition %(x) = E ( | x) and the Conditioning Theorem

E ($ | x) = E (( !%(x)) | x)

= E ( | x)! E (%(x) | x)

= %(x)!%(x)

= 0(

This fact can be combined with the law of iterated expectations to show that the unconditional
mean is also zero.

E ($) = E (E ($ | x)) = E (0) = 0(

We state this and some other results formally.

Theorem 2.8.1 Properties of the CEF error
If E | | ) then

1. E ($ | x) = 0(

2. E ($) = 0(

3. If E | |" ) for / " 1 then E |$|" ) (

4. For any function 1 (x) such that E |1 (x) $| ) then E (1 (x) $) = 0(

The proof of the third result is deferred to Section 2.34(
The fourth result, whose proof is left to Exercise 2.3, implies that $ is uncorrelated with any

function of the regressors.
The equations

 = %(x) + $

E ($ | x) = 0

together imply that %(x) is the CEF of  given x. It is important to understand that this is not
a restriction. These equations hold true by deÞnition.

The condition E ($ | x) = 0 is implied by the deÞnition of $ as the di erence between  and the
CEF % (x) ( The equation E ($ | x) = 0 is sometimes called a conditional mean restriction, since
the conditional mean of the error $ is restricted to equal zero. The property is also sometimes called
mean independence, for the conditional mean of $ is 0 and thus independent of x. However,
it does not imply that the distribution of $ is independent of x( Sometimes the assumption “$ is
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Figure 2.7: Joint density of CEF error $ and experience for white men with education=12.

independent of x” is added as a convenient simpliÞcation, but it is not generic feature of the con-
ditional mean. Typically and generally,  and x are jointly dependent, even though the conditional
mean of  is zero.

As an example, the contours of the joint density of  and experience are plotted in Figure 2.7
for the same population as Figure 2.6. The error  has a conditional mean of zero for all values of
experience, but the shape of the conditional distribution varies with the level of experience.

As a simple example of a case where ! and  are mean independent yet dependent, let  = !"

where ! and " are independent N(0# 1)$ Then conditional on !# the error  has the distribution
N(0# !2)$ Thus E ( | !) = 0 and  is mean independent of !# yet  is not fully independent of !$
Mean independence does not imply full independence.

2.9 Intercept-Only Model

A special case of the regression model is when there are no regressors x . In this case %(x) =
E (&) = ', the unconditional mean of &$ We can still write an equation for & in the regression
format:

& = '+  

E ( ) = 0

This is useful for it uniÞes the notation.

2.10 Regression Variance

An important measure of the dispersion about the CEF function is the unconditional variance
of the CEF error  $ We write this as

(2 = var ( ) = E
³
(  E )2

´
= E

¡
 2
¢
$

Theorem 2.8.1.3 implies the following simple but useful result.

Theorem 2.10.1 If E&2 )! then (2 )!$
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We can call (2 the regression variance or the variance of the regression error. The magnitude
of (2 measures the amount of variation in & which is not “explained” or accounted for in the
conditional mean E (& | x) $

The regression variance depends on the regressors x. Consider two regressions

& = E (& | x1) +  1

& = E (& | x1#x2) +  2$

We write the two errors distinctly as  1 and  2 as they are di erent — changing the conditioning
information changes the conditional mean and therefore the regression error as well.

In our discussion of iterated expectations, we have seen that by increasing the conditioning
set, the conditional expectation reveals greater detail about the distribution of &$ What is the
implication for the regression error?

It turns out that there is a simple relationship. We can think of the conditional mean E (& | x)
as the “explained portion” of &$ The remainder  = & E (& | x) is the “unexplained portion”. The
simple relationship we now derive shows that the variance of this unexplained portion decreases
when we condition on more variables. This relationship is monotonic in the sense that increasing
the amont of information always decreases the variance of the unexplained portion.

Theorem 2.10.2 If E&2 )! then

var (&) " var (&  E (& | x1)) " var (&  E (& | x1#x2)) $

Theorem 2.10.2 says that the variance of the di erence between & and its conditional mean
(weakly) decreases whenever an additional variable is added to the conditioning information.

The proof of Theorem 2.10.2 is given in Section 2.34.

2.11 Best Predictor

Suppose that given a realized value of x, we want to create a prediction or forecast of &$ We can
write any predictor as a function * (x) of x. The prediction error is the realized di erence & *(x)$
A non-stochastic measure of the magnitude of the prediction error is the expectation of its square

E (&  * (x))2 $ (2.12)

We can deÞne the best predictor as the function * (x) which minimizes (2.12). What function
is the best predictor? It turns out that the answer is the CEF %(x). This holds regardless of the
joint distribution of (&#x)$

To see this, note that the mean squared error of a predictor * (x) is

E (&  * (x))2 = E ( +% (x) * (x))2

= E 2 + 2E ( (% (x) * (x))) + E (% (x) * (x))2

= E 2 + E (% (x) * (x))2

" E 2

= E (&  % (x))2

where the Þrst equality makes the substitution & = %(x) +  and the third equality uses Theorem
2.8.1.4. The right-hand-side after the third equality is minimized by setting * (x) = % (x), yielding
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the inequality in the fourth line. The minimum is Þnite under the assumption E&2 )! as shown
by Theorem 2.10.1.

We state this formally in the following result.

Theorem 2.11.1 Conditional Mean as Best Predictor
If E&2 )!# then for any predictor * (x),

E (&  * (x))2 " E (&  % (x))2

where % (x) = E (& | x).

It may be helpful to consider this result in the context of the intercept-only model

& = '+  

E( ) = 0$

Theorem 2.11.1 shows that the best predictor for & (in the class of constants) is the unconditional
mean ' = E(&)# in the sense that the mean minimizes the mean squared prediction error.

2.12 Conditional Variance

While the conditional mean is a good measure of the location of a conditional distribution,
it does not provide information about the spread of the distribution. A common measure of the
dispersion is the conditional variance. We Þrst give the general deÞnition of the conditional
variance of a random variable +.

DeÞnition 2.12.1 If E+2 )!# the conditional variance of + given x
is

var (+ | x) = E
³
(+  E (+ | x))2 | x

´

Notice that the conditional variance is the conditional second moment, centered around the
conditional Þrst moment. Given this deÞnition, we deÞne the conditional variance of the regression
error.

DeÞnition 2.12.2 If E 2 )!# the conditional variance of the regres-
sion error  is

(2(x) = var ( | x) = E
¡
 2 | x

¢
$

Generally, (2 (x) is a non-trivial function of x and can take any form subject to the restriction
that it is non-negative. One way to think about (2(x) is that it is the conditional mean of  2

given x. Notice as well that (2(x) = var (& | x) so it is equivalently the conditional variance of the
dependent variable.

The variance is in a di erent unit of measurement than the original variable. To convert the
variance back to the same unit of measure we deÞne the conditional standard deviation as its
square root ((x) =

p
(2(x)$
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As an example of how the conditional variance depends on observables, compare the conditional
log wage densities for men and women displayed in Figure 2.3. The di erence between the densities
is not purely a location shift, but is also a di erence in spread. SpeciÞcally, we can see that the
density for men’s log wages is somewhat more spread out than that for women, while the density
for women’s wages is somewhat more peaked. Indeed, the conditional standard deviation for men’s
wages is 3.05 and that for women is 2.81. So while men have higher average wages, they are also
somewhat more dispersed.

The unconditional error variance and the conditional variance are related by the law of iterated
expectations

(2 = E
¡
 2
¢
= E

¡
E
¡
 2 | x

¢¢
= E

¡
(2(x)

¢
$

That is, the unconditional error variance is the average conditional variance.
Given the conditional variance, we can deÞne a rescaled error

" =
 

((x)
$ (2.13)

We can calculate that since ((x) is a function of x

E (" | x) = E

µ
 

((x)
| x

¶
=

1

((x)
E ( | x) = 0

and

var (" | x) = E
¡
"2 | x

¢
= E

µ
 2

(2(x)
| x

¶
=

1

(2(x)
E
¡
 2 | x

¢
=

(2(x)

(2(x)
= 1$

Thus " has a conditional mean of zero, and a conditional variance of 1.
Notice that (2.13) can be rewritten as

 = ((x)"$

and substituting this for  in the CEF equation (2.11), we Þnd that

& = %(x) + ((x)"$ (2.14)

This is an alternative (mean-variance) representation of the CEF equation.
Many econometric studies focus on the conditional mean %(x) and either ignore the condi-

tional variance (2(x)# treat it as a constant (2(x) = (2# or treat it as a nuisance parameter (a
parameter not of primary interest). This is appropriate when the primary variation in the condi-
tional distribution is in the mean, but can be short-sighted in other cases. Dispersion is relevant
to many economic topics, including income and wealth distribution, economic inequality, and price
dispersion. Conditional dispersion (variance) can be a fruitful subject for investigation.

The perverse consequences of a narrow-minded focus on the mean has been parodied in a classic
joke:

An economist was standing with one foot in a bucket of boiling water
and the other foot in a bucket of ice. When asked how he felt, he
replied, “On average I feel just Þne.”

Clearly, the economist in question ignored variance!
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2.13 Homoskedasticity and Heteroskedasticity

An important special case obtains when the conditional variance (2(x) is a constant and inde-
pendent of x. This is called homoskedasticity.

DeÞnition 2.13.1 The error is homoskedastic if E
¡
 2 | x

¢
= (2

does not depend on x.

In the general case where (2(x) depends on x we say that the error  is heteroskedastic.

DeÞnition 2.13.2 The error is heteroskedastic if E
¡
 2 | x

¢
= (2(x)

depends on x.

It is helpful to understand that the concepts homoskedasticity and heteroskedasticity concern
the conditional variance, not the unconditional variance. By deÞnition, the unconditional variance
(2 is a constant and independent of the regressors x. So when we talk about the variance as a
function of the regressors, we are talking about the conditional variance (2(x).

Some older or introductory textbooks describe heteroskedasticity as the case where “the vari-
ance of  varies across observations”. This is a poor and confusing deÞnition. It is more constructive
to understand that heteroskedasticity means that the conditional variance (2 (x) depends on ob-
servables.

Older textbooks also tend to describe homoskedasticity as a component of a correct regression
speciÞcation, and describe heteroskedasticity as an exception or deviance. This description has
inßuenced many generations of economists, but it is unfortunately backwards. The correct view
is that heteroskedasticity is generic and “standard”, while homoskedasticity is unusual and excep-
tional. The default in empirical work should be to assume that the errors are heteroskedastic, not
the converse.

In apparent contradiction to the above statement, we will still frequently impose the ho-
moskedasticity assumption when making theoretical investigations into the properties of estimation
and inference methods. The reason is that in many cases homoskedasticity greatly simpliÞes the
theoretical calculations, and it is therefore quite advantageous for teaching and learning. It should
always be remembered, however, that homoskedasticity is never imposed because it is believed to
be a correct feature of an empirical model, but rather because of its simplicity.

2.14 Regression Derivative

One way to interpret the CEF %(x) = E (& | x) is in terms of how marginal changes in the
regressors x imply changes in the conditional mean of the response variable &$ It is typical to
consider marginal changes in a single regressor, say !1, holding the remainder Þxed. When a
regressor !1 is continuously distributed, we deÞne the marginal e ect of a change in !1, holding
the variables !2# $$$# ! Þxed, as the partial derivative of the CEF

,

,!1
%(!1# $$$# ! )$

When !1 is discrete we deÞne the marginal e ect as a discrete di erence. For example, if !1 is
binary, then the marginal e ect of !1 on the CEF is

%(1# !2# $$$# ! ) %(0# !2# $$$# ! )$
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We can unify the continuous and discrete cases with the notation

#1%(x) =

 
!!"

!!#

,

,!1
%(!1# $$$# ! )# if !1 is continuous

%(1# !2# $$$# ! ) %(0# !2# $$$# ! )# if !1 is binary.

Collecting the - e ects into one -× 1 vector, we deÞne the regression derivative with respect to
x :

 %(x) =

$

%%%
&

#1%(x)
#2%(x)

...
# %(x)

'

(((
)

When all elements of x are continuous, then we have the simpliÞcation  %(x) =
,

,x
%(x), the

vector of partial derivatives.
There are two important points to remember concerning our deÞnition of the regression deriv-

ative.
First, the e ect of each variable is calculated holding the other variables constant. This is the

ceteris paribus concept commonly used in economics. But in the case of a regression derivative,
the conditional mean does not literally hold all else constant. It only holds constant the variables
included in the conditional mean. This means that the regression derivative depends on which
regressors are included. For example, in a regression of wages on education, experience, race and
sex, the regression derivative with respect to education shows the marginal e ect of education on
mean wages, holding constant experience, race and sex. But it does not hold constant an individual’s
unobservable characteristics (such as ability), nor variables not included in the regression (such as
the quality of education).

Second, the regression derivative is the change in the conditional expectation of &, not the
change in the actual value of & for an individual. It is tempting to think of the regression derivative
as the change in the actual value of &, but this is not a correct interpretation. The regression
derivative  %(x) is the change in the actual value of & only if the error  is una ected by the
change in the regressor x. We return to a discussion of causal e ects in Section 2.30.

2.15 Linear CEF

An important special case is when the CEF % (x) = E (& | x) is linear in x$ In this case we can
write the mean equation as

%(x) = !1.1 + !2.2 + · · ·+ ! . + . +1$

Notationally it is convenient to write this as a simple function of the vector x. An easy way to do
so is to augment the regressor vector x by listing the number “1” as an element. We call this the
“constant” and the corresponding coe!cient is called the “intercept”. Equivalently, specify that
the Þnal element10 of the vector x is ! = 1. Thus (2.5) has been redeÞned as the - × 1 vector

x =

*

+++++
,

!1
!2
...

!  1
1

-

.....
/

$ (2.15)

10The order doesn’t matter. It could be any element.
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With this redeÞnition, the CEF is

%(x) = !1.1 + !2.2 + · · ·+ . 

= x0 (2.16)

where

 =

 

!
"

 1
...
  

#

$
% (2.17)

is a ! × 1 coe cient vector. This is the linear CEF model. It is also often called the linear
regression model, or the regression of " on x#

In the linear CEF model, the regression derivative is simply the coe cient vector. That is

 $(x) =  #

This is one of the appealing features of the linear CEF model. The coe cients have simple and
natural interpretations as the marginal e!ects of changing one variable, holding the others constant.

Linear CEF Model

" = x0 + %

E (% | x) = 0

If in addition the error is homoskedastic, we call this the homoskedastic linear CEF model.

Homoskedastic Linear CEF Model

" = x0 + %

E (% | x) = 0

E
¡
%2 | x

¢
= &2

2.16 Linear CEF with Nonlinear E ects

The linear CEF model of the previous section is less restrictive than it might appear, as we can
include as regressors nonlinear transformations of the original variables. In this sense, the linear
CEF framework is ßexible and can capture many nonlinear e!ects.

For example, suppose we have two scalar variables '1 and '2# The CEF could take the quadratic
form

$('1( '2) = '1 1 + '2 2 + '21 3 + '22 4 + '1'2 5 +  6# (2.18)

This equation is quadratic in the regressors ('1( '2) yet linear in the coe cients  = ( 1( ###(  6)
0#

We will descriptively call (2.18) a quadratic CEF, and yet (2.18) is also a linear CEF in the
sense of being linear in the coe cients. The key is to understand that (2.18) is quadratic in the
variables ('1( '2) yet linear in the coe cients  #
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To simplify the expression, we deÞne the transformations '3 = '21( '4 = '22( '5 = '1'2( and
'6 = 1( and redeÞne the regressor vector as x = ('1( ###( '6)

0# With this redeÞnition,

$('1( '2) = x
0 

which is linear in  . For most econometric purposes (estimation and inference on  ) the linearity
in  is all that is important.

An exception is in the analysis of regression derivatives. In nonlinear equations such as (2.18),
the regression derivative should be deÞned with respect to the original variables, not with respect
to the transformed variables. Thus

)

)'1
$('1( '2) =  1 + 2'1 3 + '2 5

)

)'2
$('1( '2) =  2 + 2'2 4 + '1 5

We see that in the model (2.18), the regression derivatives are not a simple coe cient, but are
functions of several coe cients plus the levels of ('1!'2)# Consequently it is di cult to interpret
the coe cients individually. It is more useful to interpret them as a group.

We typically call  5 the interaction e ect. Notice that it appears in both regression derivative
equations, and has a symmetric interpretation in each. If  5 * 0 then the regression derivative
with respect to '1 is increasing in the level of '2 (and the regression derivative with respect to '2
is increasing in the level of '1)( while if  5 + 0 the reverse is true. It is worth noting that this
symmetry is an artiÞcial implication of the quadratic equation (2.18), and is not a general feature
of nonlinear conditional means $('1( '2).

2.17 Linear CEF with Dummy Variables

When all regressors take a Þnite set of values, it turns out the CEF can be written as a linear
function of regressors.

This simplest example is a binary variable, which takes only two distinct values. For example,
the variable sex typically takes only the values man and woman. Binary variables are extremely
common in econometric applications, and are alternatively called dummy variables or indicator
variables.

Consider the simple case of a single binary regressor. In this case, the conditional mean can
only take two distinct values. For example,

E (" | ,%') =

&
'

(

-0 if sex=man

-1 if sex=woman

To facilitate a mathematical treatment, we typically record dummy variables with the values {0( 1}#
For example

'1 =

½
0 if sex=man
1 if sex=woman

(2.19)

Given this notation we can write the conditional mean as a linear function of the dummy variable
'1( that is

E (" | '1) =  1'1 +  2

where  1 = -1  -0 and  2 = -0. In this simple regression equation the intercept  2 is equal to
the conditional mean of " for the '1 = 0 subpopulation (men) and the slope  1 is equal to the
di!erence in the conditional means between the two subpopulations.
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Equivalently, we could have deÞned '1 as

'1 =

½
1 if sex=man
0 if sex=woman

(2.20)

In this case, the regression intercept is the mean for women (rather than for men) and the regression
slope has switched signs. The two regressions are equivalent but the interpretation of the coe cients
has changed. Therefore it is always important to understand the precise deÞnitions of the variables,
and illuminating labels are helpful. For example, labelling '1 as “sex” does not help distinguish
between deÞnitions (2.19) and (2.20). Instead, it is better to label '1 as “women” or “female” if
deÞnition (2.19) is used, or as “men” or “male” if (2.20) is used.

Now suppose we have two dummy variables '1 and '2# For example, '2 = 1 if the person is
married, else '2 = 0# The conditional mean given '1 and '2 takes at most four possible values:

E (" | '1( '2) =

&
))'

))(

-00 if '1 = 0 and '2 = 0 (unmarried men)
-01 if '1 = 0 and '2 = 1 (married men)
-10 if '1 = 1 and '2 = 0 (unmarried women)
-11 if '1 = 1 and '2 = 1 (married women)

In this case we can write the conditional mean as a linear function of '1, '2 and their product
'1'2 :

E (" | '1( '2) =  1'1 +  2'2 +  3'1'2 +  4

where  1 = -10  -00(  2 = -01  -00(  3 = -11  -10  -01 + -00( and  4 = -00#

We can view the coe cient  1 as the e!ect of sex on expected log wages for unmarried wages
earners, the coe cient  2 as the e!ect of marriage on expected log wages for men wage earners, and
the coe cient  3 as the di!erence between the e!ects of marriage on expected log wages among
women and among men. Alternatively, it can also be interpreted as the di!erence between the e!ects
of sex on expected log wages among married and non-married wage earners. Both interpretations
are equally valid. We often describe  3 as measuring the interaction between the two dummy
variables, or the interaction e ect, and describe  3 = 0 as the case when the interaction e!ect is
zero.

In this setting we can see that the CEF is linear in the three variables ('1( '2( '1'2)# Thus to
put the model in the framework of Section 2.15, we would deÞne the regressor '3 = '1'2 and the
regressor vector as

x =

 

!!
"

'1
'2
'3
1

#

$$
% #

So even though we started with only 2 dummy variables, the number of regressors (including the
intercept) is 4.

If there are 3 dummy variables '1( '2( '3( then E (" | '1( '2( '3) takes at most 23 = 8 distinct
values and can be written as the linear function

E (" | '1( '2( '3) =  1'1 +  2'2 +  3'3 +  4'1'2 +  5'1'3 +  6'2'3 +  7'1'2'3 +  8

which has eight regressors including the intercept.
In general, if there are . dummy variables '1( ###( '" then the CEF E (" | '1( '2( ###( '") takes

at most 2" distinct values, and can be written as a linear function of the 2" regressors including
'1( '2( ###( '" and all cross-products. This might be excessive in practice if . is modestly large. In
the next section we will discuss projection approximations which yield more parsimonious parame-
terizations.

We started this section by saying that the conditional mean is linear whenever all regressors
take only a Þnite number of possible values. How can we see this? Take a categorical variable,
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such as race. For example, we earlier divided race into three categories. We can record categorical
variables using numbers to indicate each category, for example

'3 =

&
'

(

1 if white
2 if black
3 if other

When doing so, the values of '3 have no meaning in terms of magnitude, they simply indicate the
relevant category.

When the regressor is categorical the conditional mean of " given '3 takes a distinct value for
each possibility:

E (" | '3) =

&
'

(

-1 if '3 = 1
-2 if '3 = 2
-3 if '3 = 3

This is not a linear function of '3 itself, but it can be made a linear function by constructing
dummy variables for two of the three categories. For example

'4 =

½
1 if black
0 if not black

'5 =

½
1 if other
0 if not other

In this case, the categorical variable '3 is equivalent to the pair of dummy variables ('4( '5)# The
explicit relationship is

'3 =

&
'

(

1 if '4 = 0 and '5 = 0
2 if '4 = 1 and '5 = 0
3 if '4 = 0 and '5 = 1

Given these transformations, we can write the conditional mean of " as a linear function of '4 and
'5

E (" | '3) = E (" | '4( '5) =  1'4 +  2'5 +  3

We can write the CEF as either E (" | '3) or E (" | '4( '5) (they are equivalent), but it is only linear
as a function of '4 and '5#

This setting is similar to the case of two dummy variables, with the di!erence that we have not
included the interaction term '4'5# This is because the event {'4 = 1 and '5 = 1} is empty by
construction, so '4'5 = 0 by deÞnition.

2.18 Best Linear Predictor

While the conditional mean $(x) = E (" | x) is the best predictor of " among all functions
of x( its functional form is typically unknown. In particular, the linear CEF model is empirically
unlikely to be accurate unless x is discrete and low-dimensional so all interactions are included.
Consequently in most cases it is more realistic to view the linear speciÞcation (2.16) as an approx-
imation. In this section we derive a speciÞc approximation with a simple interpretation.

Theorem 2.11.1 showed that the conditional mean $ (x) is the best predictor in the sense
that it has the lowest mean squared error among all predictors. By extension, we can deÞne an
approximation to the CEF by the linear function with the lowest mean squared error among all
linear predictors.

For this derivation we require the following regularity condition.
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Assumption 2.18.1

1. E"2 +!#

2. E kxk2 +!#

3. Q  = E (xx0) is positive deÞnite.

In Assumption 2.18.1.2 we use the notation kxk = (x0x)1#2 to denote the Euclidean length of
the vector x.

The Þrst two parts of Assumption 2.18.1 imply that the variables " and x have Þnite means,
variances, and covariances. The third part of the assumption is more technical, and its role will
become apparent shortly. It is equivalent to imposing that the columns of the matrixQ  = E (xx0)
are linearly independent, or equivalently that the matrix is invertible.

A linear predictor for " is a function of the form x0 for some  " R . The mean squared
prediction error is

/( ) = E
¡
"  x0 

¢2
#

The best linear predictor of " given x, written P(" | x)( is found by selecting the vector  to
minimize /( )#

DeÞnition 2.18.1 The Best Linear Predictor of  given x is

P( | x) = x0 

where  minimizes the mean squared prediction error

!( ) = E
¡
  x0 

¢2
"

The minimizer
 = argmin

  R 
!(b) (2.21)

is called the Linear Projection Coe cient.

We now calculate an explicit expression for its value. The mean squared prediction error can
be written out as a quadratic function of  :

!( ) = E 2  2 0E (x ) +  0E
¡
xx0

¢
 "

The quadratic structure of !( ) means that we can solve explicitly for the minimizer. The Þrst-
order condition for minimization (from Appendix A.10) is

0 =
#

# 
!( ) =  2E (x ) + 2E

¡
xx0

¢
 " (2.22)

Rewriting (2.22) as
2E (x ) = 2E

¡
xx0

¢
 

and dividing by 2, this equation takes the form

Q!" = Q!! (2.23)
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where Q!" = E (x ) is $ × 1 and Q!! = E (xx0) is $ × $. The solution is found by inverting the
matrix Q!!, and is written

 = Q!1
!!Q!"

or
 =

¡
E
¡
xx0

¢¢!1
E (x ) " (2.24)

It is worth taking the time to understand the notation involved in the expression (2.24). Q!! is a

$ × $ matrix and Q!" is a $ × 1 column vector. Therefore, alternative expressions such as E(! )
E(!!0)

or E (x ) (E (xx0))!1 are incoherent and incorrect. We also can now see the role of Assumption
2.18.1.3. It is equivalent to assuming that Q!! has an inverse Q!1

!! which is necessary for the
normal equations (2.23) to have a solution or equivalently for (2.24) to be uniquely deÞned. In the
absence of Assumption 2.18.1.3 there could be multiple solutions to the equation (2.23).

We now have an explicit expression for the best linear predictor:

P( | x) = x0
¡
E
¡
xx0

¢¢!1
E (x ) "

This expression is also referred to as the linear projection of  on x.
The projection error is

% =   x0 " (2.25)

This equals the error from the regression equation when (and only when) the conditional mean is
linear in x& otherwise they are distinct.

Rewriting, we obtain a decomposition of  into linear predictor and error

 = x0 + %" (2.26)

In general we call equation (2.26) or x0 the best linear predictor of  given x, or the linear
projection of  on x. Equation (2.26) is also often called the regression of  on x but this can
sometimes be confusing as economists use the term regression in many contexts. (Recall that we
said in Section 2.15 that the linear CEF model is also called the linear regression model.)

An important property of the projection error % is

E (x%) = 0" (2.27)

To see this, using the deÞnitions (2.25) and (2.24) and the matrix properties AA!1 = I and
Ia = a&

E (x%) = E
¡
x
¡
  x0 

¢¢

= E (x ) E
¡
xx0

¢ ¡
E
¡
xx0

¢¢!1
E (x )

= 0 (2.28)

as claimed.
Equation (2.27) is a set of $ equations, one for each regressor. In other words, (2.27) is equivalent

to
E ('!%) = 0 (2.29)

for ( = 1& """& $" As in (2.15), the regressor vector x typically contains a constant, e.g. '" = 1. In
this case (2.29) for ( = $ is the same as

E (%) = 0" (2.30)

Thus the projection error has a mean of zero when the regressor vector contains a constant. (When
x does not have a constant, (2.30) is not guaranteed. As it is desirable for % to have a zero mean,
this is a good reason to always include a constant in any regression model.)
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It is also useful to observe that since cov('! & %) = E ('!%)  E ('!)E (%) & then (2.29)-(2.30)
together imply that the variables '! and % are uncorrelated.

This completes the derivation of the model. We summarize some of the most important prop-
erties.

Theorem 2.18.1 Properties of Linear Projection Model
Under Assumption 2.18.1,

1. The moments E (xx0) and E (x ) exist with Þnite elements.

2. The Linear Projection Coe cient (2.21) exists, is unique, and equals

 =
¡
E
¡
xx0

¢¢ 1
E (x ) !

3. The best linear predictor of  given x is

P( | x) = x0
¡
E
¡
xx0

¢¢ 1
E (x ) !

4. The projection error " =   x0 exists and satisÞes

E
¡
"2
¢
#!

and
E (x") = 0!

5. If x contains an constant, then

E (") = 0!

6. If E | | #! and E kxk #! for $ " 2 then E |"| #!!

A complete proof of Theorem 2.18.1 is given in Section 2.34.
It is useful to reßect on the generality of Theorem 2.18.1. The only restriction is Assumption

2.18.1. Thus for any random variables ( %x) with Þnite variances we can deÞne a linear equation
(2.26) with the properties listed in Theorem 2.18.1. Stronger assumptions (such as the linear CEF
model) are not necessary. In this sense the linear model (2.26) exists quite generally. However,
it is important not to misinterpret the generality of this statement. The linear equation (2.26) is
deÞned as the best linear predictor. It is not necessarily a conditional mean, nor a parameter of a
structural or causal economic model.

Linear Projection Model

 = x0 + "!

E (x") = 0

 =
¡
E
¡
xx0

¢¢ 1
E (x )

We illustrate projection using three log wage equations introduced in earlier sections.
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For our Þrst example, we consider a model with the two dummy variables for sex and race
similar to Table 2.1. As we learned in Section 2.17, the entries in this table can be equivalently
expressed by a linear CEF. For simplicity, let’s consider the CEF of log(&'(") as a function of
Black and Female.

E(log(&'(") | )*'+,% -".'*") =  0!20)*'+, 0!24-".'*"+0!10)*'+,×-".'*"+3!06! (2.31)

This is a CEF as the variables are binary and all interactions are included.
Now consider a simpler model omitting the interaction e ect. This is the linear projection on

the variables )*'+, and -".'*"

P(log(&'(") | )*'+,% -".'*") =  0!15)*'+,  0!23-".'*"+ 3!06! (2.32)

What is the di erence? The full CEF (2.31) shows that the race gap is di erentiated by sex: it
is 20% for black men (relative to non-black men) and 10% for black women (relative to non-black
women). The projection model (2.32) simpliÞes this analysis, calculating an average 15% wage gap
for blacks, ignoring the role of sex. Notice that this is despite the fact that the sex variable is
included in (2.32).
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Figure 2.8: Projections of log(&'(") onto Education

For our second example we consider the CEF of log wages as a function of years of education
for white men which was illustrated in Figure 2.5 and is repeated in Figure 2.8. Superimposed on
the Þgure are two projections. The Þrst (given by the dashed line) is the linear projection of log
wages on years of education

P(log(&'(") | /01+'2345) = 0!11/01+'2345+ 1!5

This simple equation indicates an average 11% increase in wages for every year of education. An
inspection of the Figure shows that this approximation works well for education" 9, but under-
predicts for individuals with lower levels of education. To correct this imbalance we use a linear
spline equation which allows di erent rates of return above and below 9 years of education:

P (log(&'(") | /01+'2345% (/01+'2345 9)× 1 (/01+'2345 6 9))

= 0!02/01+'2345+ 0!10× (/01+'2345 9)× 1 (/01+'2345 6 9) + 2!3

This equation is displayed in Figure 2.8 using the solid line, and appears to Þt much better. It
indicates a 2% increase in mean wages for every year of education below 9, and a 12% increase in
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Figure 2.9: Linear and Quadratic Projections of log(&'(") onto Experience

mean wages for every year of education above 9. It is still an approximation to the conditional
mean but it appears to be fairly reasonable.

For our third example we take the CEF of log wages as a function of years of experience for
white men with 12 years of education, which was illustrated in Figure 2.6 and is repeated as the
solid line in Figure 2.9. Superimposed on the Þgure are two projections. The Þrst (given by the
dot-dashed line) is the linear projection on experience

P(log(&'(") | /78"$3"5+") = 0!011/78"$3"5+"+ 2!5

and the second (given by the dashed line) is the linear projection on experience and its square

P(log(&'(") | /78"$3"5+") = 0!046/78"$3"5+" 0!0007/78"$3"5+"2 + 2!3!

It is fairly clear from an examination of Figure 2.9 that the Þrst linear projection is a poor approx-
imation. It over-predicts wages for young and old workers, and under-predicts for the rest. Most
importantly, it misses the strong downturn in expected wages for older wage-earners. The second
projection Þts much better. We can call this equation a quadratic projection since the function
is quadratic in "78"$3"5+"!
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Invertibility and IdentiÞcation

The linear projection coe!cient  = (E (xx0)) 1 E (x ) exists and is
unique as long as the ,×, matrix Q  = E (xx0) is invertible. The matrix
Q  is sometimes called the design matrix, as in experimental settings
the researcher is able to control Q  by manipulating the distribution of
the regressors x!

Observe that for any non-zero ! # R!%

!0Q  ! = E
¡
!0xx0!

¢
= E

¡
!0x

¢2
" 0

so Q  by construction is positive semi-deÞnite. The assumption that
it is positive deÞnite means that this is a strict inequality, E (!0x)2 6

0! Equivalently, there cannot exist a non-zero vector ! such that !0x =
0 identically. This occurs when redundant variables are included in x!

Positive semi-deÞnite matrices are invertible if and only if they are positive
deÞnite. When Q  is invertible then  = (E (xx0)) 1 E (x ) exists and is
uniquely deÞned. In other words, in order for  to be uniquely deÞned, we
must exclude the degenerate situation of redundant varibles.

Theorem 2.18.1 shows that the linear projection coe!cient  is iden-
tiÞed (uniquely determined) under Assumption 2.18.1. The key is invert-
ibility of Q  . Otherwise, there is no unique solution to the equation

Q   = Q !! (2.33)

When Q  is not invertible there are multiple solutions to (2.33), all of
which yield an equivalent best linear predictor x0 . In this case the coe!-
cient  is not identiÞed as it does not have a unique value. Even so, the
best linear predictor x0 still identiÞed. One solution is to set

 =
¡
E
¡
xx0

¢¢ 
E (x )

where A denotes the generalized inverse of A (see Appendix A.5).

2.19 Linear Predictor Error Variance

As in the CEF model, we deÞne the error variance as

92 = E
¡
 2
¢
!

Setting "  = E
¡
#2
¢
and Q  = E (#x0) we can write $2 as

$2 = E
¡
#  x0 

¢2

= E#2  2E
¡
#x0
¢
 +  0E

¡
xx0

¢
 

= "   2Q! Q
 1
  
Q  +Q! Q

 1
  
Q  Q

 1
  Q  

= "   Q! Q
 1
  
Q  

!"#
= "  · ! (2.34)

One useful feature of this formula is that it shows that "  · = "   Q! Q
 1
  
Q  equals the

variance of the error from the linear projection of # on x.
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2.20 Regression Coe cients

Sometimes it is useful to separate the constant from the other regressors, and write the linear
projection equation in the format

# = x0 + %+  (2.35)

where % is the intercept and x does not contain a constant.
Taking expectations of this equation, we Þnd

E# = Ex0 + E%+ E 

or
& = &0$ + %

where & = E# and &$ = Ex' since E ( ) = 0 from (2.30). (While x does not contain a constant,
the equation does so (2.30) still applies.) Rearranging, we Þnd

% = &  &0$ !

Subtracting this equation from (2.35) we Þnd

#  & = (x &$)
0
 +  ' (2.36)

a linear equation between the centered variables #  & and x  &$. (They are centered at their
means, so are mean-zero random variables.) Because x  &$ is uncorrelated with  ' (2.36) is also
a linear projection, thus by the formula for the linear projection model,

 =
¡
E
¡
(x &$) (x &$)

0¢¢ 1
E ((x &$) (#  & ))

= var (x) 1 cov (x' #)

a function only of the covariances11 of x and #!

Theorem 2.20.1 In the linear projection model

# = x0 + %+  '

then
% = &  &0$ (2.37)

and
 = var (x) 1 cov (x' #) ! (2.38)

2.21 Regression Sub-Vectors

Let the regressors be partitioned as

x =

µ
x1
x2

¶
! (2.39)

11The covariance matrix between vectors  and ! is cov (  !) = E
 
(  E ) (!  E!)0

!
! The (co)variance

matrix of the vector  is var ( ) = cov (   ) = E
 
(  E ) (  E )0

!
!
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We can write the projection of # on x as

# = x0 +  

= x01 1 + x
0
2 2 +  (2.40)

E (x ) = 0!

In this section we derive formula for the sub-vectors  1 and  2!

Partition Q$$ comformably with x

Q$$ =

 
Q11 Q12

Q21 Q22

¸
=

 
E (x1x

0
1) E (x1x

0
2)

E (x2x
0
1) E (x2x

0
2)

¸

and similarly Q$ 

Q$ =

 
Q1 

Q2 

¸
=

 
E (x1#)
E (x2#)

¸
!

By the partitioned matrix inversion formula (A.4)

Q 1$$ =

 
Q11 Q12

Q21 Q22

¸ 1
!"#
=

 
Q11 Q12

Q21 Q22

¸
=

 
Q 111·2  Q 111·2Q12Q

 1
22

 Q 122·1Q21Q
 1
11 Q 122·1

¸
! (2.41)

where Q11·2
!"#
= Q11  Q12Q

 1
22Q21 and Q22·1

!"#
= Q22  Q21Q

 1
11Q12. Thus

 =

µ
 1

 2

¶

=

 
Q 111·2  Q 111·2Q12Q

 1
22

 Q 122·1Q21Q
 1
11 Q 122·1

¸  
Q1 

Q2 

¸

=

µ
Q 111·2

¡
Q1  Q12Q

 1
22Q2 

¢

Q 122·1

¡
Q2  Q21Q

 1
11Q1 

¢
¶

=

µ
Q 111·2Q1 ·2

Q 122·1Q2 ·1

¶

We have shown that

 1 = Q
 1
11·2Q1 ·2

 2 = Q
 1
22·1Q2 ·1

2.22 Coe cient Decomposition

In the previous section we derived formulae for the coe cient sub-vectors  1 and  2!We now use
these formulae to give a useful interpretation of the coe cients in terms of an iterated projection.

Take equation (2.40) for the case dim((1) = 1 so that )1 ! R!

# = (1)1 + x
0
2 2 +  ! (2.42)

Now consider the projection of (1 on x2 :

(1 = x
0
2!2 + *1

E (x2*1) = 0!

From (2.24) and (2.34), !2 = Q
 1
22Q21 and E*

2
1 = Q11·2 = Q11 Q12Q

 1
22Q21! We can also calculate

that

E (*1#) = E
¡¡
(1  !02x2

¢
#
¢
= E ((1#) !02E (x2#) = Q1  Q12Q

 1
22Q2 = Q1 ·2!
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We have found that

)1 = Q
 1
11·2Q1 ·2 =

E (*1#)

E*21

the coe cient from the simple regression of # on *1!

What this means is that in the multivariate projection equation (2.42), the coe cient )1 equals
the projection coe cient from a regression of # on *1' the error from a projection of (1 on the
other regressors x2! The error *1 can be thought of as the component of (1 which is not linearly
explained by the other regressors. Thus the coe cient )1 equals the linear e!ect of (1 on #' after
stripping out the e!ects of the other variables.

There was nothing special in the choice of the variable (1! This derivation applies symmetrically
to all coe cients in a linear projection. Each coe cient equals the simple regression of # on the
error from a projection of that regressor on all the other regressors. Each coe cient equals the
linear e!ect of that variable on #' after linearly controlling for all the other regressors.

2.23 Omitted Variable Bias

Again, let the regressors be partitioned as in (2.39). Consider the projection of  on x1 only.
Perhaps this is done because the variables x2 are not observed. This is the equation

 = x01 1 + ! (2.43)

E (x1!) = 0"

Notice that we have written the coe cient on x1 as  1 rather than !1 and the error as ! rather
than #" This is because (2.43) is di!erent than (2.40). Goldberger (1991) introduced the catchy
labels long regression for (2.40) and short regression for (2.43) to emphasize the distinction.

Typically, !1 6=  1, except in special cases. To see this, we calculate

 1 =
¡
E
¡
x1x

0
1

¢¢ 1
E (x1 )

=
¡
E
¡
x1x

0
1

¢¢ 1
E
¡
x1
¡
x01!1 + x

0
2!2 + #

¢¢

= !1 +
¡
E
¡
x1x

0
1

¢¢ 1
E
¡
x1x

0
2

¢
!2

= !1 +  !2

where
 =

¡
E
¡
x1x

0
1

¢¢ 1
E
¡
x1x

0
2

¢

is the coe cient matrix from a projection of x2 on x1"
Observe that  1 = !1+ !2 6= !1 unless  = 0 or !2 = 0" Thus the short and long regressions

have di!erent coe cients on x1" They are the same only under one of two conditions. First, if the
projection of x2 on x1 yields a set of zero coe cients (they are uncorrelated), or second, if the
coe cient on x2 in (2.40) is zero. In general, the coe cient in (2.43) is  1 rather than !1" The
di!erence  !2 between  1 and !1 is known as omitted variable bias. It is the consequence of
omission of a relevant correlated variable.

To avoid omitted variables bias the standard advice is to include all potentially relevant variables
in estimated models. By construction, the general model will be free of such bias. Unfortunately
in many cases it is not feasible to completely follow this advice as many desired variables are
not observed. In this case, the possibility of omitted variables bias should be acknowledged and
discussed in the course of an empirical investigation.

For example, suppose  is log wages, $1 is education, and $2 is intellectual ability. It seems
reasonable to suppose that education and intellectual ability are positively correlated (highly able
individuals attain higher levels of education) which means  % 0. It also seems reasonable to
suppose that conditional on education, individuals with higher intelligence will earn higher wages
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on average, so that &2 % 0" This implies that  &2 % 0 and '1 = &1 +  &2 % &1" Therefore, it seems
reasonable to expect that in a regression of wages on education with ability omitted, the coe cient
on education is higher than in a regression where ability is included. In other words, in this context
the omitted variable biases the regression coe cient upwards.

2.24 Best Linear Approximation

There are alternative ways we could construct a linear approximation x0! to the conditional
mean ((x)" In this section we show that one alternative approach turns out to yield the same
answer as the best linear predictor.

We start by deÞning the mean-square approximation error of x0! to ((x) as the expected
squared di!erence between x0! and the conditional mean ((x)

)(!) = E
¡
((x) x0!

¢2
" (2.44)

The function )(!) is a measure of the deviation of x0! from ((x)" If the two functions are identical
then )(!) = 0* otherwise )(!) % 0" We can also view the mean-square di!erence )(!) as a density-
weighted average of the function (((x) x0!)2 * since

)(!) =

Z

R 

¡
((x) x0!

¢2
+ (x))x

where + (x) is the marginal density of x"
We can then deÞne the best linear approximation to the conditional ((x) as the function x0!

obtained by selecting ! to minimize )(!) :

! = argmin
!!R 

)(b)" (2.45)

Similar to the best linear predictor we are measuring accuracy by expected squared error. The
di!erence is that the best linear predictor (2.21) selects ! to minimize the expected squared predic-
tion error, while the best linear approximation (2.45) selects ! to minimize the expected squared
approximation error.

Despite the di!erent deÞnitions, it turns out that the best linear predictor and the best linear
approximation are identical. By the same steps as in (2.18) plus an application of conditional
expectations we can Þnd that

! =
¡
E
¡
xx0

¢¢ 1
E (x((x)) (2.46)

=
¡
E
¡
xx0

¢¢ 1
E (x ) (2.47)

(see Exercise 2.19). Thus (2.45) equals (2.21). We conclude that the deÞnition (2.45) can be viewed
as an alternative motivation for the linear projection coe cient.

2.25 Normal Regression

Suppose the variables ( *x) are jointly normally distributed. Consider the best linear predictor
of  given x

 = x0! + #

! =
¡
E
¡
xx0

¢¢ 1
E (x ) "

Since the error # is a linear transformation of the normal vector ( *x)* it follows that (#*x) is
jointly normal, and since they are jointly normal and uncorrelated (since E (x#) = 0) they are also
independent (see Appendix B.9). Independence implies that

E (# | x) = E (#) = 0
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and
E
¡
#2 | x

¢
= E

¡
#2
¢
= ,2

which are properties of a homoskedastic linear CEF.
We have shown that when ( *x) are jointly normally distributed, they satisfy a normal linear

CEF
 = x0! + #

where
# ! N(0* ,2)

is independent of x.
This is an alternative (and traditional) motivation for the linear CEF model. This motivation

has limited merit in econometric applications since economic data is typically non-normal.

2.26 Regression to the Mean

The term regression originated in an inßuential paper by Francis Galton published in 1886,
where he examined the joint distribution of the stature (height) of parents and children. E!ectively,
he was estimating the conditional mean of children’s height given their parent’s height. Galton
discovered that this conditional mean was approximately linear with a slope of 2/3. This implies
that on average a child’s height is more mediocre (average) than his or her parent’s height. Galton
called this phenomenon regression to the mean, and the label regression has stuck to this day
to describe most conditional relationships.

One of Galton’s fundamental insights was to recognize that if the marginal distributions of  
and $ are the same (e.g. the heights of children and parents in a stable environment) then the
regression slope in a linear projection is always less than one.

To be more precise, take the simple linear projection

 = $& + -+ # (2.48)

where  equals the height of the child and $ equals the height of the parent. Assume that  and $
have the same mean, so that . = .! = ." Then from (2.37)

- = (1 &).

so we can write the linear projection (2.48) as

P ( | $) = (1 &).+ $&"

This shows that the projected height of the child is a weighted average of the population average
height . and the parent’s height $* with the weight equal to the regression slope &" When the
height distribution is stable across generations, so that var( ) = var($)* then this slope is the
simple correlation of  and $" Using (2.38)

& =
cov ($*  )

var($)
= corr($*  )"

By the properties of correlation (e.g. equation (B.7) in the Appendix),  1 " corr($*  ) " 1* with
corr($*  ) = 1 only in the degenerate case  = $" Thus if we exclude degeneracy, & is strictly less
than 1.

This means that on average a child’s height is more mediocre (closer to the population average)
than the parent’s.
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Sir Francis Galton

Sir Francis Galton (1822-1911) of England was one of the leading Þgures in
late 19th century statistics. In addition to inventing the concept of regres-
sion, he is credited with introducing the concepts of correlation, the standard
deviation, and the bivariate normal distribution. His work on heredity made
a signiÞcant intellectual advance by examing the joint distributions of ob-
servables, allowing the application of the tools of mathematical statistics to
the social sciences.

A common error — known as the regression fallacy — is to infer from & / 1 that the population
is converging, meaning that its variance is declining towards zero. This is a fallacy because we
derived the implication & / 1 under the assumption of constant means and variances. So certainly
& / 1 does not imply that the variance  is less than than the variance of $"

Another way of seeing this is to examine the conditions for convergence in the context of equation
(2.48). Since $ and # are uncorrelated, it follows that

var( ) = &2 var($) + var(#)"

Then var( ) / var($) if and only if

&2 / 1 
var(#)

var($)

which is not implied by the simple condition |&| / 1"
The regression fallacy arises in related empirical situations. Suppose you sort families into groups

by the heights of the parents, and then plot the average heights of each subsequent generation over
time. If the population is stable, the regression property implies that the plots lines will converge
— children’s height will be more average than their parents. The regression fallacy is to incorrectly
conclude that the population is converging. A message to be learned from this example is that such
plots are misleading for inferences about convergence.

The regression fallacy is subtle. It is easy for intelligent economists to succumb to its temptation.
A famous example is The Triumph of Mediocrity in Business by Horace Secrist, published in 1933.
In this book, Secrist carefully and with great detail documented that in a sample of department
stores over 1920-1930, when he divided the stores into groups based on 1920-1921 proÞts, and
plotted the average proÞts of these groups for the subsequent 10 years, he found clear and persuasive
evidence for convergence “toward mediocrity”. Of course, there was no discovery — regression to
the mean is a necessary feature of stable distributions.

2.27 Reverse Regression

Galton noticed another interesting feature of the bivariate distribution. There is nothing special
about a regression of  on $" We can also regress $ on  " (In his heredity example this is the best
linear predictor of the height of parents given the height of their children.) This regression takes
the form

$ =  &" + -" + #"" (2.49)

This is sometimes called the reverse regression. In this equation, the coe cients -"* &" and
error #" are deÞned by linear projection. In a stable population we Þnd that

&" = corr($*  ) = &

-" = (1 &). = -
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which are exactly the same as in the projection of  on $! The intercept and slope have exactly the
same values in the forward and reverse projections!

While this algebraic discovery is quite simple, it is counter-intuitive. Instead, a common yet
mistaken guess for the form of the reverse regression is to take the equation (2.48), divide through
by & and rewrite to Þnd the equation

$ =  
1

&
 

-

&
 

1

&
# (2.50)

suggesting that the projection of $ on  should have a slope coe cient of 10& instead of &* and
intercept of  -0& rather than -" What went wrong? Equation (2.50) is perfectly valid, because
it is a simple manipulation of the valid equation (2.48). The trouble is that (2.50) is neither a
CEF nor a linear projection. Inverting a projection (or CEF) does not yield a projection (or CEF).
Instead, (2.49) is a valid projection, not (2.50).

In any event, Galton’s Þnding was that when the variables are standardized, the slope in both
projections ( on $* and $ and  ) equals the correlation, and both equations exhibit regression to
the mean. It is not a causal relation, but a natural feature of all joint distributions.

2.28 Limitations of the Best Linear Predictor

Let’s compare the linear projection and linear CEF models.
From Theorem 2.8.1.4 we know that the CEF error has the property E (x#) = 0" Thus a linear

CEF is a linear projection. However, the converse is not true as the projection error does not
necessarily satisfy E (# | x) = 0" Furthermore, the linear projection may be a poor approximation
to the CEF.

To see these points in a simple example, suppose that the true process is  = $ + $2 with
$ ! N(0* 1)" In this case the true CEF is (($) = $ + $2 and there is no error. Now consider the
linear projection of  on $ and a constant, namely the model  = &$ + - + !" Since $ ! N(0* 1)
then $ and $2 are uncorrelated the linear projection takes the form P ( | $) = $+1" This is quite
di!erent from the true CEF (($) = $ + $2" The projection error equals # = $2  1* which is a
deterministic function of $* yet is uncorrelated with $. We see in this example that a projection
error need not be a CEF error, and a linear projection can be a poor approximation to the CEF.

Another defect of linear projection is that it is sensitive to the marginal distribution of the
regressors when the conditional mean is non-linear. We illustrate the issue in Figure 2.10 for a
constructed12 joint distribution of  and $. The solid line is the non-linear CEF of  given $"
The data are divided in two — Group 1 and Group 2 — which have di!erent marginal distributions
for the regressor $* and Group 1 has a lower mean value of $ than Group 2. The separate linear
projections of  on $ for these two groups are displayed in the Figure by the dashed lines. These
two projections are distinct approximations to the CEF. A defect with linear projection is that it
leads to the incorrect conclusion that the e!ect of $ on  is di!erent for individuals in the two
groups. This conclusion is incorrect because in fact there is no di!erence in the conditional mean
function. The apparant di!erence is a by-product of a linear approximation to a non-linear mean,
combined with di!erent marginal distributions for the conditioning variables.

2.29 Random Coe cient Model

A model which is notationally similar to but conceptually distinct from the linear CEF model
is the linear random coe cient model. It takes the form

 = x0"

12 The  in Group 1 are N(2 1) and those in Group 2 are N(4 1) and the conditional distribution of ! given " is
N(#(") 1) where #(") = 2" "2$6%
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Figure 2.10: Conditional Mean and Two Linear Projections

where the individual-speciÞc coe cient  is random and independent of x. For example, if x is
years of schooling and  is log wages, then  is the individual-speciÞc returns to schooling. If
a person obtains an extra year of schooling,  is the actual change in their wage. The random
coe cient model allows the returns to schooling to vary in the population. Some individuals might
have a high return to education (a high  ) and others a low return, possibly 0, or even negative.

In the linear CEF model the regressor coe cient equals the regression derivative — the change
in the conditional mean due to a change in the regressors, ! =  !(x). This is not the e!ect on a
given individual, it is the e!ect on the population average. In contrast, in the random coe cient
model, the random vector  = (x0 ) is the true causal e!ect — the change in the response variable
 itself due to a change in the regressors.

It is interesting, however, to discover that the linear random coe cient model implies a linear
CEF. To see this, let ! and  denote the mean and covariance matrix of  :

! = E( )

 = var ( )

and then decompose the random coe cient as

 = ! + u

where u is distributed independently of x with mean zero and covariance matrix  " Then we can
write

E( | x) = x0E( | x) = x0E( ) = x0!

so the CEF is linear in x, and the coe cients ! equal the mean of the random coe cient  .
We can thus write the equation as a linear CEF

 = x0! + # (2.51)

where # = x0u and u =   !. The error is conditionally mean zero:

E(# | x) = 0"
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Furthermore

var (# | x) = x0 var ( )x

= x0 x

so the error is conditionally heteroskedastic with its variance a quadratic function of x.

Theorem 2.29.1 In the linear random coe cient model  = x0 with  
independent of x, E kxk2 $!% and E k k2 $!% then

E ( | x) = x0!

var ( | x) = x0 x

where ! = E( ) &'(  = var ( )"

2.30 Causal E ects

So far we have avoided the concept of causality, yet often the underlying goal of an econometric
analysis is to uncover a causal relationship between variables. It is often of great interest to
understand the causes and e!ects of decisions, actions, and policies. For example, we may be
interested in the e!ect of class sizes on test scores, police expenditures on crime rates, climate
change on economic activity, years of schooling on wages, institutional structure on growth, the
e!ectiveness of rewards on behavior, the consequences of medical procedures for health outcomes,
or any variety of possible causal relationships. In each case, the goal is to understand what is the
actual e!ect on the outcome  due to a change in the input )" We are not just interested in the
conditional mean or linear projection, we would like to know the actual change.

Two inherent barriers are that the causal e!ect is typically speciÞc to an individual and that it
is unobserved.

Consider the e!ect of schooling on wages. The causal e!ect is the actual di!erence a person
would receive in wages if we could change their level of education holding all else constant. This
is speciÞc to each individual as their employment outcomes in these two distinct situations is
individual. The causal e!ect is unobserved because the most we can observe is their actual level
of education and their actual wage, but not the counterfactual wage if their education had been
di!erent.

To be even more speciÞc, suppose that there are two individuals, Jennifer and George, and
both have the possibility of being high-school graduates or college graduates, but both would have
received di!erent wages given their choices. For example, suppose that Jennifer would have earned
$10 an hour as a high-school graduate and $20 an hour as a college graduate while George would
have earned $8 as a high-school graduate and $12 as a college graduate. In this example the causal
e!ect of schooling is $10 a hour for Jennifer and $4 an hour for George. The causal e!ects are
speciÞc to the individual and neither causal e!ect is observed.

A variable )1 can be said to have a causal e!ect on the response variable  if the latter changes
when all other inputs are held constant. To make this precise we need a mathematical formulation.
We can write a full model for the response variable  as

 = * ()1%x2%u) (2.52)

where )1 and x2 are the observed variables, u is an + × 1 unobserved random factor, and * is a
functional relationship. This framework includes as a special case the random coe cient model
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(2.29) studied earlier. We deÞne the causal e!ect of )1 within this model as the change in  due to
a change in )1 holding the other variables x2 and u constant.

DeÞnition 2.30.1 In the model (2.52) the causal e ect of )1 on  is

,()1%x2%u) = 1* ()1%x2%u) % (2.53)

the change in  due to a change in )1% holding x2 and u constant.

To understand this concept, imagine taking a single individual. As far as our structural model is
concerned, this person is described by their observables )1 and x2 and their unobservables u. In a
wage regression the unobservables would include characteristics such as the person’s abilities, skills,
work ethic, interpersonal connections, and preferences. The causal e!ect of )1 (say, education) is
the change in the wage as )1 changes, holding constant all other observables and unobservables.

It may be helpful to understand that (2.53) is a deÞnition, and does not necessarily describe
causality in a fundamental or experimental sense. Perhaps it would be more appropriate to label
(2.53) as a structural e ect (the e!ect within the structural model).

Sometimes it is useful to write this relationship as a potential outcome function

 ()1) = * ()1%x2%u)

where the notation implies that  ()1) is holding x2 and u constant.
A popular example arises in the analysis of treatment e!ects with a binary regressor )1. Let )1 =

1 indicate treatment (e.g. a medical procedure) and )1 = 0 indicate non-treatment. In this case
 ()1) can be written

 (0) = * (0%x2%u)

 (1) = * (1%x2%u) "

In the literature on treatment e!ects, it is common to refer to  (0) and  (1) as the latent outcomes
associated with non-treatment and treatment, respectively. That is, for a given individual,  (0) is
the health outcome if there is no treatment, and  (1) is the health outcome if there is treatment.
The causal e!ect of treatment for the individual is the change in their health outcome due to
treatment — the change in  as we hold both x2 and u constant:

, (x2%u) =  (1)  (0)"

This is random (a function of x2 and u) as both potential outcomes  (0) and  (1) are di!erent
across individuals.

In a sample, we cannot observe both outcomes from the same individual, we only observe the
realized value

 =

 
!

"

 (0) if !1 = 0

 (1) if !1 = 1"

As the causal e ect varies across individuals and is not observable, it cannot be measured on
the individual level. We therefore focus on aggregate causal e ects, in particular what is known as
the average causal e ect.
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DeÞnition 2.30.2 In the model (2.52) the average causal e ect of !1
on  conditional on x2 is

#$%(!1&x2) = E ($(!1&x2&u) | !1&x2) (2.54)

=

Z

R 

 1' (!1&x2&u) ((u | !1&x2))u

where ((u | !1&x2) is the conditional density of u given !1&x2.

We can think of the average causal e ect #$%(!1&x2) as the average e ect in the general
population. In our Jennifer & George schooling example given earlier, supposing that half of the
population are Jennifer’s and the other half George’s, then the average causal e ect of college is
(10+4)*2 = $7 an hour. This is not the individual causal e ect, it is the average of the causal e ect
across all individuals in the population. Given data on only educational attainment and wages, the
ACE of $7 is the best we can hope to learn.

When we conduct a regression analysis (that is, consider the regression of observed wages
on educational attainment) we might hope that the regression reveals the average causal e ect.
Technically, that the regression derivative (the coe!cient on education) equals the ACE. Is this the
case? In other words, what is the relationship between the average causal e ect #$%(!1&x2) and
the regression derivative  1+ (!1&x2)? Equation (2.52) implies that the CEF is

+(!1&x2) = E (' (!1&x2&u) | !1&x2)

=

Z

R 

' (!1&x2&u) ((u | !1&x2))u&

the average causal equation, averaged over the conditional distribution of the unobserved component
u.

Applying the marginal e ect operator, the regression derivative is

 1+(!1&x2) =

Z

R 

 1' (!1&x2&u) ((u | !1&x2))u

+

Z

R 

' (!1&x2&u) 1((u|!1&x2))u

= #$%(!1&x2) +

Z

R 

' (!1&x2&u) 1((u | !1&x2))u" (2.55)

Equation (2.55) shows that in general, the regression derivative does not equal the average
causal e ect. The di erence is the second term on the right-hand-side of (2.55). The regression
derivative and ACE equal in the special case when this term equals zero, which occurs when
 1((u | !1&x2) = 0& that is, when the conditional density of u given (!1&x2) does not depend on
!1" When this condition holds then the regression derivative equals the ACE, which means that
regression analysis can be interpreted causally, in the sense that it uncovers average causal e ects.

The condition is su!ciently important that it has a special name in the treatment e ects
literature.

DeÞnition 2.30.3 Conditional Independence Assumption (CIA).
Conditional on x2& the random variables !1 and u are statistically inde-
pendent.
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The CIA implies ((u | !1&x2) = ((u | x2) does not depend on !1& and thus 1((u | !1&x2) = 0"
Thus the CIA implies that 1+(!1&x2) = #$%(!1&x2)& the regression derivative equals the average
causal e ect.

Theorem 2.30.1 In the structural model (2.52), the Conditional Indepen-
dence Assumption implies

 1+(!1&x2) = #$%(!1&x2)

the regression derivative equals the average causal e ect for !1 on  condi-
tional on x2.

This is a fascinating result. It shows that whenever the unobservable is independent of the
treatment variable (after conditioning on appropriate regressors) the regression derivative equals the
average causal e ect. In this case, the CEF has causal economic meaning, giving strong justiÞcation
to estimation of the CEF. Our derivation also shows the critical role of the CIA. If CIA fails, then
the equality of the regression derivative and ACE fails.

This theorem is quite general. It applies equally to the treatment-e ects model where !1 is
binary or to more general settings where !1 is continuous.

It is also helpful to understand that the CIA is weaker than full independence of u from the
regressors (!1&x2)" The CIA was introduced precisely as a minimal su!cient condition to obtain
the desired result. Full independence implies the CIA and implies that each regression derivative
equals that variable’s average causal e ect, but full independence is not necessary in order to
causally interpret a subset of the regressors.

To illustrate, let’s return to our education example involving a population with equal numbers
of Jennifer’s and George’s. Recall that Jennifer earns $10 as a high-school graduate and $20 as a
college graduate (and so has a causal e ect of $10) while George earns $8 as a high-school graduate
and $12 as a college graduate (so has a causal e ect of $4). Given this information, the average
causal e ect of college is $7, which is what we hope to learn from a regression analysis.

Now suppose that while in high school all students take an aptitude test, and if a student gets
a high (H) score he or she goes to college with probability 3/4, and if a student gets a low (L)
score he or she goes to college with probability 1/4. Suppose further that Jennifer’s get an aptitude
score of H with probability 3/4, while George’s get a score of H with probability 1/4. Given this
situation, 62.5% of Jennifer’s will go to college13, while 37.5% of George’s will go to college14.

An econometrician who randomly samples 32 individuals and collects data on educational at-
tainment and wages will Þnd the following wage distribution:

$8 $10 $12 $20 Mean
High-School Graduate 10 6 0 0 $8.75
College Graduate 0 0 6 10 $17.00

Let ,-../0/ denote a dummy variable taking the value of 1 for a college graduate, otherwise 0.
Thus the regression of wages on college attendence takes the form

E (120/ | ,-../0/) = 8"25,-../0/+ 8"75"

The coe!cient on the college dummy, $8.25, is the regression derivative, and the implied wage e ect
of college attendence. But $8.25 overstates the average causal e ect of $7. The reason is because

13Pr ( !""#$#|%#&&'(#)) = Pr ( !""#$#|*) Pr (*|%#&&'(#)) + Pr ( !""#$#|+) Pr (+|%#&&'(#)) = (3,4)2 + (1,4)2
14Pr ( !""#$#|-#!)$#) = Pr ( !""#$#|*)Pr (*|-#!)$#) + Pr ( !""#$#|+) Pr (+|-#!)$#) = (3,4)(1,4) + (1,4)(3,4)
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the CIA fails. In this model the unobservable u is the individual’s type (Jennifer or George) which
is not independent of the regressor !1 (education), since Jennifer is more likely to go to college than
George. Since Jennifer’s causal e ect is higher than George’s, the regression derivative overstates
the ACE. The coe!cient $8.25 is not the average beneÞt of college attendence, rather it is the
observed di erence in realized wages in a population whose decision to attend college is correlated
with their individual causal e ect. At the risk of repeating myself, in this example, $8.25 is the true
regression derivative, it is the di erence in average wages between those with a college education and
those without. It is not, however, the average causal e ect of college education in the population.

This does not mean that it is impossible to estimate the ACE. The key is conditioning on the
appropriate variables. The CIA says that we need to Þnd a variable !2 such that conditional on
!2& u and !1 (type and education) are independent. In this example a variable which will achieve
this is the aptitude test score. The decision to attend college was based on the test score, not on
an individual’s type. Thus educational attainment and type are independent once we condition on
the test score.

This also alters the ACE. Notice that DeÞnition 2.30.2 is a function of !2 (the test score).
Among the students who receive a high test score, 3/4 are Jennifer’s and 1/4 are George’s. Thus
the ACE for students with a score of H is (3*4)× 10+ (1*4)× 4 = $8"50" Among the students who
receive a low test score, 1/4 are Jennifer’s and 3/4 are George’s. Thus the ACE for students with
a score of L is (1*4)×10+(3*4)×4 = $5"50" The ACE varies between these two observable groups
(those with high test scores and those with low test scores). Again, we would hope to be able to
learn the ACE from a regression analysis, this time from a regression of wages on education and
test scores.

To see this in the wage distribution, suppose that the econometrician collects data on the
aptitude test score as well as education and wages. Given a random sample of 32 individuals we
would expect to Þnd the following wage distribution:

$8 $10 $12 $20 Mean
High-School Graduate + High Test Score 1 3 0 0 $9.50
College Graduate + High Test Score 0 0 3 9 $18.00
High-School Graduate + Low Test Score 9 3 0 0 $8.50
College Graduate + Low Test Score 0 0 3 1 $14.00

DeÞne the dummy variable '30'4,-5/ which takes the value 1 for students who received a
high test score, else zero. The regression of wages on college attendence and test scores (with
interactions) takes the form

E (120/ | ,-../0/& '30'4,-5/) = 1"00'30'4,-5/+ 5"50,-../0/+ 3"00'30'4,-5/× ,-../0/+ 8"50"

The co!cient on ,-../0/, $5.50, is the regression derivative of college attendence for those with low
test scores, and the sum of this coe!cient with the interaction coe!cient, $8.50, is the regression
derivative for college attendence for those with high test scores. These equal the average causal
e ect.

In this example, by conditioning on the aptitude test score, the average causal e ect of education
on wages can be learned from a regression analyis. What this shows is that by conditioning on the
proper variables, it may be possible to achieve the CIA, in which case regression analysis measures
average causal e ects.

2.31 Expectation: Mathematical Details*

We deÞne the mean or expectation E of a random variable  as follows. If  is discrete on
the set {61& 62& """} then

E =
 X

 =1

  Pr (! =   ) "
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and if ! is continuous with density # then

E! =

Z
 

! 

!#(!)$!%

We can unify these deÞnitions by writing the expectation as the Lebesgue integral with respect to
the distribution function &

E! =

Z
 

! 

!$& (!)% (2.56)

In the event that the integral (2.56) is not Þnite, separately evaluate the two integrals

'1 =

Z
 

0
!$& (!) (2.57)

'2 =  

Z 0

! 

!$& (!)% (2.58)

If '1 = ! and '2 ( ! then it is typical to deÞne E! = !% If '1 ( ! and '2 = ! then we deÞne
E! =  !% However, if both '1 =! and '2 =! then E! is undeÞned. If

E |!| =

Z
 

! 

|!| $& (!) = '1 + '2 (!

then E! exists and is Þnite. In this case it is common to say that the mean E! is “well-deÞned”.
More generally, ! has a Þnite )’th moment if

E |!|! (!% (2.59)

By Liapunov’s Inequality (B.20), (2.59) implies E |!|" (! for all 1 " * " )% Thus, for example, if
the fourth moment is Þnite then the Þrst, second and third moments are also Þnite.

It is common in econometric theory to assume that the variables, or certain transformations of
the variables, have Þnite moments of a certain order. How should we interpret this assumption?
How restrictive is it?

One way to visualize the importance is to consider the class of Pareto densities given by

#(!) = +!!#!1" ! , 1%

The parameter + of the Pareto distribution indexes the rate of decay of the tail of the density.
Larger + means that the tail declines to zero more quickly. See Figure 2.11 below where we show
the Pareto density for + = 1 and + = 2% The parameter + also determines which moments are Þnite.
We can calculate that

E |!|! =

 
!"

!#

+
R
 

1 !!!#!1$! =
+

+ )
if ) ( +

! if ) # +%

This shows that if ! is Pareto distributed with parameter +" then the )’th moment of ! is Þnite if
and only if ) ( +% Higher + means higher Þnite moments. Equivalently, the faster the tail of the
density declines to zero, the more moments are Þnite.

This connection between tail decay and Þnite moments is not limited to the Pareto distribution.
We can make a similar analysis using a tail bound. Suppose that ! has density #(!) which satisÞes
the bound #(!) " - |!|!#!1 for some - (! and + , 0. Since #(!) is bounded below a scale of a
Pareto density, its tail behavior is similarly bounded. This means that for ) ( +

E |!|! =

Z
 

! 

|!|! #(!)$! "

Z 1

!1
#(!)$! + 2-

Z
 

1
!!!#!1$! " 1 +

2-

+ )
(!%
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Figure 2.11: Pareto Densities, + = 1 and + = 2

Thus if the tail of the density declines at the rate |!|!#!1 or faster, then ! has Þnite moments up
to (but not including) +% Broadly speaking, the restriction that ! has a Þnite )$% moment means
that the tail of !’s density declines to zero faster than !!!!1% The faster decline of the tail means
that the probability of observing an extreme value of ! is a more rare event.

We complete this section by adding an alternative representation of expectation in terms of the
distribution function.

Theorem 2.31.1 For any non-negative random variable !

E! =

Z
 

0
Pr (! , .) $.

Proof of Theorem 2.31.1: Let & "(/) = Pr (! , /) = 1  & (/), where & (/) is the distribution
function. By integration by parts

E! =

Z
 

0
!$& (!) =  

Z
 

0
!$& "(!) =  [!& "(!)] 0 +

Z
 

0
& "(!)$! =

Z
 

0
Pr (! , .) $.

as stated. ¥

2.32 Existence and Uniqueness of the Conditional Expectation*

In Sections 2.3 and 2.6 we deÞned the conditional mean when the conditioning variables x are
discrete and when the variables (!"x) have a joint density. We have explored these cases because
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these are the situations where the conditional mean is easiest to describe and understand. However,
the conditional mean exists quite generally without appealing to the properties of either discrete
or continuous random variables.

To justify this claim we now present a deep result from probability theory. What it says is that
the conditional mean exists for all joint distributions (!"x) for which ! has a Þnite mean.

Theorem 2.32.1 Existence of the Conditional Mean
If E |!| (! then there exists a function 0(x) such that for all measurable
sets X

E (1 (x $ X ) !) = E (1 (x $ X )0(x)) % (2.60)

The function 0(x) is almost everywhere unique, in the sense that if 1(x)
satisÞes (2.60), then there is a set 2 such that Pr(2) = 1 and 0(x) = 1(x)
for x $ 2% The function 0(x) is called the conditional mean and is
written 0(x) = E (! | x) %

See, for example, Ash (1972), Theorem 6.3.3.

The conditional mean0(x) deÞned by (2.60) specializes to (2.7) when (!"x) have a joint density.
The usefulness of deÞnition (2.60) is that Theorem 2.32.1 shows that the conditional mean 0(x)
exists for all Þnite-mean distributions. This deÞnition allows ! to be discrete or continuous, for x to
be scalar or vector-valued, and for the components of x to be discrete or continuously distributed.

2.33 IdentiÞcation*

A critical and important issue in structural econometric modeling is identiÞcation, meaning that
a parameter is uniquely determined by the distribution of the observed variables. It is relatively
straightforward in the context of the unconditional and conditional mean, but it is worthwhile to
introduce and explore the concept at this point for clarity.

Let & denote the distribution of the observed data, for example the distribution of the pair
(!" /)% Let F be a collection of distributions &% Let 3 be a parameter of interest (for example, the
mean E!).

DeÞnition 2.33.1 A parameter 3 $ R is identiÞed on F if for all & $ F "

there is a uniquely determined value of 3%

Equivalently, 3 is identiÞed if we can write it as a mapping 3 = 4(& ) on the set F % The restriction
to the set F is important. Most parameters are identiÞed only on a strict subset of the space of all
distributions.

Take, for example, the mean 5 = E!% It is uniquely determined if E |!| (!" so it is clear that

5 is identiÞed for the set F =
n
& :

R
 

! 
|!| $& (!) (!

o
. However, 5 is also well deÞned when it is

either positive or negative inÞnity. Hence, deÞning '1 and '2 as in (2.57) and (2.58), we can deduce
that 5 is identiÞed on the set F = {& : {'1 (!} % {'2 (!}} %

Next, consider the conditional mean. Theorem 2.32.1 demonstrates that E |!| (! is a su cient
condition for identiÞcation.
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Theorem 2.33.1 IdentiÞcation of the Conditional Mean
If E |!| ( !" the conditional mean 0(x) = E (! | x) is identiÞed almost
everywhere.

It might seem as if identiÞcation is a general property for parameters, so long as we exclude
degenerate cases. This is true for moments of observed data, but not necessarily for more compli-
cated models. As a case in point, consider the context of censoring. Let ! be a random variable
with distribution &% Instead of observing !" we observe !" deÞned by the censoring rule

!" =

½
 if   !

! if  " !
#

That is,   is capped at the value !# A common example is income surveys, where income responses
are “top-coded”, meaning that incomes above the top code ! are recorded as equalling the top
code. The observed variable   has distribution

$  (%) =

½
$ (%) for %  !

1 for % ! !#

We are interested in features of the distribution $ not the censored distribution $  # For example,
we are interested in the mean wage & = E ( ) # The di culty is that we cannot calculate & from
$  except in the trivial case where there is no censoring Pr ( ! !) = 0# Thus the mean & is not
generically identiÞed from the censored distribution.

A typical solution to the identiÞcation problem is to assume a parametric distribution. For
example, let F be the set of normal distributions  " N(&' (2)# It is possible to show that the
parameters (&' (2) are identiÞed for all $ # F # That is, if we know that the uncensored distribution
is normal, we can uniquely determine the parameters from the censored distribution. This is often
called parametric identiÞcation as identiÞcation is restricted to a parametric class of distribu-
tions. In modern econometrics this is generally viewed as a second-best solution, as identiÞcation
has been achieved only through the use of an arbitrary and unveriÞable parametric assumption.

A pessimistic conclusion might be that it is impossible to identify parameters of interest from
censored data without parametric assumptions. Interestingly, this pessimism is unwarranted. It
turns out that we can identify the quantiles ) of $ for *  Pr (  !) # For example, if 20%
of the distribution is censored, we can identify all quantiles for * # (0' 0#8)# This is often called
nonparametric identiÞcation as the parameters are identiÞed without restriction to a parametric
class.

What we have learned from this little exercise is that in the context of censored data, moments
can only be parametrically identiÞed, while (non-censored) quantiles are nonparametrically identi-
Þed. Part of the message is that a study of identiÞcation can help focus attention on what can be
learned from the data distributions available.

2.34 Technical Proofs*

Proof of Theorem 2.7.1: For convenience, assume that the variables have a joint density + ( 'x).
Since E ( | x) is a function of the random vector x only, to calculate its expectation we integrate
with respect to the density + (x) of x' that is

E (E ( | x)) =

Z

R 
E ( | x) + (x) ,x#
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Substituting in (2.7) and noting that +!| ( |x) + (x) = + ( 'x) ' we Þnd that the above expression
equals Z

R 

µZ

R

 +!| ( |x) , 

¶
+ (x) ,x =

Z

R 

Z

R

 + ( 'x) , ,x = E ( )

the unconditional mean of  # ¥

Proof of Theorem 2.7.2: Again assume that the variables have a joint density. It is useful to
observe that

+ ( |x1'x2) + (x2|x1) =
+ ( 'x1'x2)

+ (x1'x2)

+ (x1'x2)

+ (x1)
= + ( 'x2|x1) ' (2.61)

the density of ( 'x2) given x1# Here, we have abused notation and used a single symbol + to denote
the various unconditional and conditional densities to reduce notational clutter.

Note that

E ( | x1'x2) =

Z

R

 + ( |x1'x2) , # (2.62)

Integrating (2.62) with respect to the conditional density of x2 given x1, and applying (2.61) we
Þnd that

E (E ( | x1'x2) | x1) =

Z

R 2

E ( | x1'x2) + (x2|x1) ,x2

=

Z

R 2

µZ

R

 + ( |x1'x2) , 

¶
+ (x2|x1) ,x2

=

Z

R 2

Z

R

 + ( |x1'x2) + (x2|x1) , ,x2

=

Z

R 2

Z

R

 + ( 'x2|x1) , ,x2

= E ( | x1)

as stated. ¥

Proof of Theorem 2.7.3:

E (- (x)  | x) =

Z

R

- (x)  +!| ( |x) , = - (x)

Z

R

 +!| ( |x) , = - (x)E ( | x)

This is (2.9). The assumption that E |- (x)  | . $ is required for the Þrst equality to be well-
deÞned. Equation (2.10) follows by applying the Simple Law of Iterated Expectations to (2.9).
¥

Proof of Theorem 2.10.2: The assumption that E 2 . $ implies that all the conditional
expectations below exist.

Set / = E( | x1'x2). By the conditional Jensen’s inequality (B.13),

(E(/ | x1))
2
 E

¡
/2 | x1

¢
#

Taking unconditional expectations, this implies

E (E( | x1))
2
 E

³
(E( | x1'x2))

2
´
#

Similarly,

(E )2  E
³
(E( | x1))

2
´
 E

³
(E( | x1'x2))

2
´
# (2.63)
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The variables  ' E( | x1) and E( | x1'x2) all have the same mean E ' so the inequality (2.63)
implies that the variances are ranked monotonically:

0  var (E( | x1))  var (E( | x1'x2)) # (2.64)

Next, for & = E observe that

E ( % E( | x)) (E( | x)% &) = E ( % E( | x)) (E( | x)% &) = 0

so the decomposition
 % & =  % E( | x) + E( | x)% &

satisÞes
var ( ) = var ( % E( | x)) + var (E( | x)) # (2.65)

The monotonicity of the variances of the conditional mean (2.64) applied to the variance decom-
position (2.65) implies the reverse monotonicity of the variances of the di!erences, completing the
proof. ¥

Proof of Theorem 2.8.1. Applying Minkowski’s Inequality (B.19) to 0 =  %1(x)'

(E |0|")1#" = (E | %1(x)|")1#"  (E | |")1#" + (E |1(x)|")1#" .$'

where the two parts on the right-hand are Þnite since E | |" .$ by assumption and E |1(x)|" .$

by the Conditional Expectation Inequality (B.14). The fact that (E |0|")1#" . $ implies E |0|" .

$# ¥

Proof of Theorem 2.18.1. For part 1, by the Expectation Inequality (B.15), (A.19) and As-
sumption 2.18.1, °°E

¡
xx0

¢°°  E
°°xx0

°° = E kxk2 .$#

Similarly, using the Expectation Inequality (B.15), the Cauchy-Schwarz Inequality (B.17) and As-
sumption 2.18.1,

kE (x )k  E kx k  
³
E kxk2

´1#2 ¡
E 2

¢1#2
.$#

Thus the moments E (x ) and E (xx0) are Þnite and well deÞned.
For part 2, the coe cient  = (E (xx0))!1

E (x ) is well deÞned since (E (xx0))!1 exists under
Assumption 2.18.1.

Part 3 follows from DeÞnition 2.18.1 and part 2.
For part 4, Þrst note that

E02 = E
¡
 % x0 

¢2

= E 2 % 2E
¡
 x0
¢
 +  0E

¡
xx0

¢
 

= E 2 % 2E
¡
 x0
¢ ¡
E
¡
xx0

¢¢
!1
E (x )

 E 2

.$#

The Þrst inequality holds because E ( x0) (E (xx0))!1
E (x ) is a quadratic form and therefore neces-

sarily non-negative. Second, by the Expectation Inequality (B.15), the Cauchy-Schwarz Inequality
(B.17) and Assumption 2.18.1,

kE (x0)k  E kx0k =
³
E kxk2

´1#2 ¡
E02

¢1#2
.$#

It follows that the expectation E (x0) is Þnite, and is zero by the calculation (2.28).
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For part 6, Applying Minkowski’s Inequality (B.19) to 0 =  % x0 '

(E |0|")1#" =
¡
E
¯̄
 % x0 

¯̄"¢1#"

 (E | |")1#" +
¡
E
¯̄
x0 

¯̄"¢1#"

 (E | |")1#" + (E kxk")1#" k k

.$'

the Þnal inequality by assumption# ¥
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Exercises

Exercise 2.1 Find E (E (E ( | x1'x2'x3) | x1'x2) | x1) #

Exercise 2.2 If E ( | 2) = 3+ 42' Þnd E ( 2) as a function of moments of 2#

Exercise 2.3 Prove Theorem 2.8.1.4 using the law of iterated expectations.

Exercise 2.4 Suppose that the random variables  and 2 only take the values 0 and 1, and have
the following joint probability distribution

2 = 0 2 = 1

 = 0 .1 .2
 = 1 .4 .3

Find E ( | 2) ' E
¡
 2 | 2

¢
and var ( | 2) for 2 = 0 and 2 = 1#

Exercise 2.5 Show that (2(x) is the best predictor of 02 given x:

(a) Write down the mean-squared error of a predictor 5(x) for 02#

(b) What does it mean to be predicting 02?

(c) Show that (2(x) minimizes the mean-squared error and is thus the best predictor.

Exercise 2.6 Use  = 1(x) + 0 to show that

var ( ) = var (1(x)) + (2

Exercise 2.7 Show that the conditional variance can be written as

(2(x) = E
¡
 2 | x

¢
% (E ( | x))2 #

Exercise 2.8 Suppose that  is discrete-valued, taking values only on the non-negative integers,
and the conditional distribution of  given x is Poisson:

Pr ( = 6 | x) =
exp (%x0 ) (x0 )$

6!
' 6 = 0' 1' 2' ###

Compute E ( | x) and var ( | x) # Does this justify a linear regression model of the form  =
x0 + 0?

Hint: If Pr ( = 6) = exp(!%)%!

$! ' then E = 7 and var( ) = 7#

Exercise 2.9 Suppose you have two regressors: 21 is binary (takes values 0 and 1) and 22 is
categorical with 3 categories (8'9':)# Write E ( | 21' 22) as a linear regression.

Exercise 2.10 True or False. If  = 2; + 0' 2 # R' and E (0 | 2) = 0' then E
¡
220
¢
= 0#

Exercise 2.11 True or False. If  = 2; + 0' 2 # R' and E (20) = 0' then E
¡
220
¢
= 0#

Exercise 2.12 True or False. If  = x0 + 0 and E (0 | x) = 0' then 0 is independent of x#

Exercise 2.13 True or False. If  = x0 + 0 and E(x0) = 0' then E (0 | x) = 0#



CHAPTER 2. CONDITIONAL EXPECTATION AND PROJECTION 56

Exercise 2.14 True or False. If  = x0 + 0, E (0 | x) = 0' and E
¡
02 | x

¢
= (2' a constant, then

0 is independent of x#

Exercise 2.15 Consider the intercept-only model  = * + 0 deÞned as the best linear predictor.
Show that * = E( )#

Exercise 2.16 Let 2 and  have the joint density + (2'  ) = 3
2

¡
22 +  2

¢
on 0  !  1" 0    1#

Compute the coe cients of the best linear predictor  = $+%!+&# Compute the conditional mean
'(!) = E ( | !) # Are the best linear predictor and conditional mean di!erent?

Exercise 2.17 Let ! be a random variable with ( = E! and )2 = var(!)# DeÞne

*
¡
! | (" )2

¢
=

µ
!! (

(!! ()2 ! )2

¶
#

Show that E* (! | '" +) = 0 if and only if ' = ( and + = )2#

Exercise 2.18 Suppose that

x =

 

!
1
!2
!3

"

#

and !3 = $1 + $2!2 is a linear function of !2#

(a) Show that Q  = E (xx0) is not invertible.

(b) Use a linear transformation of x to Þnd an expression for the best linear predictor of  given
x. (Be explicit, do not just use the generalized inverse formula.)

Exercise 2.19 Show (2.46)-(2.47), namely that for

,( ) = E
¡
'(x)! x0 

¢2

then

 = argmin
! R 

,(b)

=
¡
E
¡
xx0

¢¢!1
E (x'(x))

=
¡
E
¡
xx0

¢¢!1
E (x ) #

Hint: To show E (x'(x)) = E (x ) use the law of iterated expectations.

Exercise 2.20 Verify that (2.60) holds with '(x) deÞned in (2.7) when ( "x) have a joint density
-( "x)#


